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Abstract

The Gaussian process latent variable model
(GP-LVM) is a powerful approach for prob-
abilistic modelling of high dimensional data
through dimensional reduction. In this paper
we extend the GP-LVM through hierarchies.
A hierarchical model (such as a tree) allows
us to express conditional independencies in
the data as well as the manifold structure.
We first introduce Gaussian process hierar-
chies through a simple dynamical model, we
then extend the approach to a more complex
hierarchy which is applied to the visualisation
of human motion data sets.

1. Introduction

The Gaussian process latent variable model
(Lawrence, 2004; Lawrence, 2005) has proven to
be a highly effective approach to probabilistic mod-
elling of high dimensional data that lies on a non-linear
manifold (Grochow et al., 2004; Urtasun et al., 2005;
Urtasun et al., 2006; Ferris et al., 2007). The curse
of dimensionality is finessed by assuming that the
high dimensional data is intrinsically low dimensional
in nature. This reduces the effective number of
parameters in the model enabling good generalisation
from very small data sets using non-linear models
(even when the dimensionality of the features, d, is
larger than the number of data points, N).

One alternative to manifold representations when
modelling high dimensional data is to develop a la-
tent variable model with sparse connectivity to ex-
plain the data. For example tree structured models
have been suggested for modelling images (Williams &
Feng, 1999; Feng et al., 2002; Awasthi et al., 2007),

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

for object recognition (Felzenszwalb & Huttenlocher,
2000; Ioffe & Forsyth, 2001) and human pose estima-
tion (Ramanan & Forsyth, 2003; Sigal et al., 2004;
Lan & Huttenlocher, 2005). From the probabilistic
perspective (Pearl, 1988) the tree structures (and other
sparse probabilistic models) offer a convenient way to
specify conditional independencies in the model. In
general, it is not clear how such conditional indepen-
dencies can be specified within the context of dimen-
sional reduction. In this paper we will show how we
can construct our dimensionality reduction in a hierar-
chical way allowing us to concurrently exploit the ad-
vantages of expressing conditional independencies and
low dimensional non-linear manifolds.

1.1. GP-LVMs

The Gaussian process latent variable model (GP-
LVM) is a fully probabilistic, non-linear, latent vari-
able model that generalises principal component anal-
ysis. The model was inspired by the observation that
a particular probabilistic interpretation of PCA is a
product of Gaussian process models each with a linear
covariance function. Through consideration of non-
linear covariance functions a non-linear latent variable
model can be constructed (Lawrence, 2004; Lawrence,
2005).

An important characteristic of the GP-LVM is the ease
and accuracy with which probabilistic reconstructions
of the data can be made, given a (possibly new) point
in the latent space. This characteristic is exploited
in several of the successful applications of the GP-
LVM: learning style from motion capture data (Gro-
chow et al., 2004) learning a prior model for tracking
(Urtasun et al., 2005; Urtasun et al., 2006) and robot
simultaneous localisation and mapping (Ferris et al.,
2007). All make use of smooth mappings from the
latent space to the data space.

The probabilistic approach to non-linear dimension-
ality reduction (MacKay, 1995; Bishop et al., 1998)
is to formulate a latent variable model, where the la-
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tent dimension, q, is lower than the data dimension,
d. The latent space is then governed by a prior dis-
tribution p (X). The latent variable is related to the
observation space through a probabilistic mapping,

yni = fi (xn;W) + εn,

where yni is the ith feature of the nth data point and εn

is a noise term that is typically taken to be Gaussian1,
p (εn) = N

(
εn|0, β−1

)
. and W is a matrix of mapping

parameters. If the prior is taken to be independent
across data points the marginal likelihood of the data
can be written as

p (Y|W) =
∫ N∏

n=1

p (yn|xn,W) p (xn) dX,

where p (yn|xn) =
∏d

i=1 N
(
yin|fin (xn) , β−1

)
. If the

mapping is chosen to be linear, fi (xn) = wT
i xn, and

the prior over the latent variables is taken to be Gaus-
sian, then the maximum likelihood solution of the
model spans the principal subspace of the data (Tip-
ping & Bishop, 1999). However, if the mapping is
non-linear it is unclear, in general, how to propagate
the prior distribution’s uncertainty through the non-
linearity.

The alternative approach taken by the GP-LVM is to
place the prior distribution over the mappings rather
than the latent variables. The mappings may then
be marginalised and the marginal likelihood optimised
with respect to the latent variables,

p (Y|X) =
∫ d∏

i=1

N∏
n=1

p (yin|fin) p (f |X) d f . (1)

It turns out that if the prior is taken to be a Gaussian
process that is independent across data dimensions
and has a linear covariance function (thus restricting
the mappings to linearity) the maximum likelihood so-
lution with respect to the embeddings is given by prin-
cipal component analysis. However, if the covariance
function is one which allows non-linear functions (e.g.
the RBF kernel) then the model provides a probabilis-
tic non-linear latent variable model.

There are several advantages to marginalising the
mapping rather than the latent variable. In partic-
ular, a non-linear latent variable model that does not
require approximations is recovered. Additionally, we
now have a probabilistic model of the data that is ex-
pressed in the form p (Y|X) rather than the more usual
form p (Y|W). Our model is non-parametric, the size

1We denote a Gaussian distribution over z with mean
µ and covariance Σ by N (z|µ, Σ).

of X is N × q and each row of X, given by xn, is
associated with an data observation, yn. This makes
it much easier to augment the model with additional
constraints or prior information about the data. Inter-
esting examples include adding dynamical priors in the
latent space (Wang et al., 2006; Urtasun et al., 2006)
or constraining points in the latent space according to
intuitively reasonable visualisation criteria (Lawrence
& Quiñonero Candela, 2006). In this paper we further
exploit this characteristic, proposing the hierarchical
Gaussian process latent variable models. In the next
section we will illustrate the nature of a simple (one
layered) hierarchical model by considering a novel ap-
proach to incorporating dynamics into the GP-LVM,
then in Section 3 we consider more complex hierar-
chies, focussing on models of human body motion.

2. Dynamics via a Simple Hierarchy

In a standard latent variable model setting, a dy-
namical system is modelled by constructing a dy-
namical prior distribution that, for tractability, typ-
ically takes the form of a Markov chain, p (X) =
p (x1)

∏T
t=2 p (xt|xt−1). The latent variable, X, is

marginalised as before, inducing correlations between
neighbouring time points. In the GP-LVM we
marginalise with respect to the mapping, once this
marginalisation is performed, integrating out the la-
tent space and any associated dynamical prior ana-
lytically intractable. However, we may instead choose
combine a dynamical prior with the GP-LVM likeli-
hood and seek a maximum a posteriori (MAP) solu-
tion.

2.1. Gaussian Process Dynamics

Seeking a MAP solution is the approach taken by
(Wang et al., 2006) who make use of an autoregressive
Gaussian process prior to augment the GP-LVM with
dynamics. The utility of the approach is nicely demon-
strated in the context of tracking by (Urtasun et al.,
2006) who show that through dynamics the track is
sustained even when the subject is fully occluded for
several frames.

The autoregressive approach works by predicting the
next temporal location in the latent space given the
previous, i.e. it models p (xt|xt−1). However, since the
prediction is given by a Gaussian process it is a uni-
modal prediction over xt given xt−1. This can present
problems: consider, for example, the case of a sub-
ject walking for several paces before breaking into a
run. We expect the walking steps to be broadly peri-
odic, each point from the cycle projecting into a similar
point in latent space. However, at the point the sub-
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ject begins to break into a run, there is a bifurcation in
the dynamics. Such a bifurcation can not be captured
correctly by unimodal autoregressive dynamics. Ad-
ditionally, the autoregressive approach assumes that
samples are taken at uniform intervals (perhaps with
occasional drop outs) which may not always be the
case (as we shall see in Section 3).

2.2. A Simple Hierarchical Model

As the first illustration of a hierarchical GP-LVM we
consider an alternative implementation of dynamics.
Just as (Wang et al., 2006) we implement the dynam-
ics through a Gaussian process prior and seek a MAP
solution. However, in contrast to their approach, our
model is not autoregressive. We simply place a Gaus-
sian process prior over the latent space, the inputs
for which are given by the time points, t. This ap-
proach alleviates the requirement for uniform intervals
between time samples and, because the prior over the
latent space is no longer a function of the location in
latent space, allows the path in latent space to bifur-
cate at points where the subject, for example, breaks
into a run.

Given a set of d-dimensional observations from a mo-
tion capture sequence, Y = [y1,:, . . . , yT,:]

T ∈ <T×d,
we seek to model them by a Gaussian process latent
variable model,

p (Y|X) =
d∏

j=1

N (y:,j |0,Kx) , (2)

where y:,j is a column of the design matrix Y, each
element being from a different point in the time se-
quence, and Kx is a covariance matrix (or kernel)
which depends on the q-dimensional latent variables,
X = [x1, . . . , xT ]T ∈ <T×q, each element being given
by, for example,

kx (xi,xj) = σ2
rbf exp

(
−‖xi − xj‖2

2l2x

)
+ σ2

whiteδij ,

which is an radial basis function (RBF) covariance
matrix with a noise term. The parameters of this
covariance are the variances of the different terms
σ2
rbf, σ2

white and the length scale of the RBF term,
lx. In (2) we have dropped the dependence on these
parameters to avoid cluttering notation.

We construct a simple hierarchy by placing a prior
over the elements of X. We wish this prior to be tem-
porally smooth, ensuring two points from X that are
temporally close, e.g. xi,: and xj,: are also nearby in
space. A suitable prior is given by a Gaussian process
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Figure 1. Typical sample paths for the RBF covariance
function as temporal prior over the latent space.

in which the input to the Gaussian process is time,

p (X|t) =
q∏

i=1

N (x:,i|0,Kt) , (3)

where t ∈ <T×1 is the vector of times at which we
observed the sequence, x:,j is the jth column of X and
Kt is a covariance matrix of the form

kt (ti, tj) = ς2
rbf exp

(
− (ti − tj)

2

2l2t

)
+ ς2white.

For a two dimensional latent space typical sample
paths for this covariance function are shown in Fig-
ure 1.

The temporal prior in (3) can be combined with the
GP-LVM likelihood in (2) to form a new model,

p (Y|t) =
∫

p (Y|X) p (X|t) dX,

unfortunately such a marginalisation is intractable.
Instead, we seek to make progress by seeking a maxi-
mum a posteriori (MAP) solution, maximising

log p (X|Y, t) = log p (Y|X) + log p (X|t) + const.

with respect to X. The first term in this equation is
the standard objective function for the GP-LVM, the
second term has the form

log p (X|t) = −1
2

q∏
j=1

xT
:,jK

−1
t x:,j + const.,

where x:,j is the jth column of X. The gradient of this
additional term may also be found,

d log p (X|t)
dX

= K−1
t X

and combined with the gradient of log p (Y|X) to find
the MAP solution. This can easily be found using
gradient based methods.
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Interaction

Subject 1 Subject 2

Data 1 Data 2
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1 2Y

3X

2X

Figure 2. A simple hierarchy for capturing interaction be-
tween two subjects where Y1 is the data associated with
subject 1, Y2 is that of subject 2. Each of these vari-
able sets is then controlled by latent variables, X1 and X2.
These latent variables are in turn controlled by X3.

3. More Complex Hierarchies

We now turn to a slightly more complex hierarchy than
the dynamical model described in the previous section.
Consider a motion capture example with multiple sub-
jects interacting. Given the form of the interaction
it should be possible to model each subject indepen-
dently. This form of conditional independence is well
captured by a hierarchical model such as that shown
in Figure 2.

The joint probability distribution represented by this
graph is given by

p (Y1,Y2) =
∫

p (Y1|X1) . . .

×
∫

p (Y2|X2) . . .

×
∫

p (X1,X2|X3) dX3dX2dX1

,

where each conditional distribution is given by a
Gaussian process. However, once again, the required
marginalisations are not tractable. We therefore turn
to MAP solutions for finding the values of the latent
variables. For this model, this means maximisation of

log p (X1,X2X3|Y1,Y2) = log p (Y1|X1)
+ log p (Y2|X2)
+ log p (X1,X2|X3) ,

which is the sum of three Gaussian process log like-
lihoods. The first two terms are associated with the

two subjects. The third term provides co-ordination
between the subjects.

3.1. Two Interacting Subjects

To demonstrate this hierarchical model we considered
a motion capture data set consisting of two interacting
subjects. The data, which was taken from the CMU
MOCAP data base2, consists of two subjects3 that
approach each other and ‘high five’.

The algorithm for optimisation of the latent variables
proceeded as follows:

1. Initialise each leaf node’s latent variable set
(X1,X2) through principal component analysis of
the corresponding data set (Y1,Y2).

2. Initialise the root node’s latent variable set (X3)
through principal component analysis of the
concatenated latent variables of its dependents
[X1 X2].

3. Optimise jointly the parameters of the kernel ma-
trices for each Gaussian process model and the
latent variable positions (X1,X2,X3).

The original data is sampled at 120 frames per sec-
ond. We extracted frames 50 to 113, sub-sampling to
30 frames per second, frames 114 to 155 at the full
sample rate and frames 156 to 232 sub-sampling at 30
frames per second. This gives a data set with a variable
sample rate. In the context of this data the variable
sample rate is important: the section where we used
the higher sample rate contains the slapping of the
two subjects hands. This motion is rapid and cannot
be accurately reconstructed with a sample rate of 30
frames per second. This variable sample rate presents
problems for the autoregressive dynamics we reviewed
in Section 2.1. However, for the regressive dynamics
we introduced in Section 2.2 the variable sample rate
can simply be reflected in the vector t. We therefore
made use of these dynamics by adding a further layer
to the hierarchy,

p (Y1,Y2|t) =
∫

p (Y1|X1) . . .

×
∫

p (Y2|X2)
∫

p (X1,X2|X3) . . .

×p (X3|t) dX3dX2dX1.

2http://mocap.cs.cmu.edu.
3The subjects used are numbered 20 and 21 in the data

base. The motion is number 11.
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Figure 4. Decomposition of skeleton for hierarchical mod-
elling. By separating the component parts of the skeleton
in this manner we can model the space of natural motions
for each component part and express them independently
or jointly.

However, we do not optimise the parameters of the
dynamics: we wish the latent space to be constrained
by the dynamics. Finally, we would like the effect of
the dynamics to be present as we descend the the hi-
erarchy. To this end, we constrained the noise param-
eter, σ2

white of the Gaussian process associated with
p (X1,X2|X3) to 1 × 10−6. If we allow this variance
to be free, the effect of the dynamics could become
diluted as we drop down the hierarchy. By constrain-
ing this variance we force the temporal correlations
present in the data to be respected.

In Figure 3 we show the results of mapping these mo-
tions into this hierarchical model.

4. Subject Decomposition

As well as decomposing the interactions between two
subjects into a hierarchy, we can also consider decom-
position of a single subject into parts. As we discussed
in the introduction, there have been several different
approaches to modelling motion capture data through
tree based models, but these models typically assume
that the nodes of the tree are observed and that the
tree rigidly reflects the skeletal structure. Some effort
has been made to model additional correlations in mo-
tion data by augmenting the tree with an additional,
common, latent variable (Lan & Huttenlocher, 2005).
However, our hierarchical model is closer in structure
to the tree models of (Williams & Feng, 1999) where
the tree structure refers to a hierarchy of latent vari-
ables, rather than a hierarchy of the observed variables.

We considered a data set composed of a walking mo-

tion and a running motion, again taken from the CMU
MOCAP data base. The run was taken from motion 25
of subject 35 and the walk was taken from motion 01
of subject 35. The data was sub-sampled to 30 frames
per second and one cycle of each motion was used. The
x and y location of each motion’s ‘root position’ was
set to zero so that the subject was running/walking ‘in
place’. We modelled the subject using the decompo-
sition shown in Figure 4, but to reflect the fact that
two different motions were present in the data we con-
structed a hierarchy with two roots. One root was as-
sociated with the run and a second root was associated
with the walk. The prior induced by the run root was
applied only to the run data points in the next layer of
the hierarchy (abdomen, legs, upper body). Similarly,
the prior induced by the walk root was applied only
to data points from the walk data. The upper body,
legs and all the leaf nodes were applied to the entire
data set. This construction enables us to express the
two motion sequences separately whilst retaining the
information required to jointly model the component
parts of the skeleton. The aim is for nodes in the lower
levels of the hierarchy to span the range of motions,
whilst the upper layer specifies the particular motion
type.

As the motion is broadly periodic, we made use of a
periodic kernel (MacKay, 1998) for the regressive dy-
namics in each latent space (see pg. 92 in (Rasmussen
& Williams, 2006) for details). The resulting visuali-
sation is shown in Figure 5.

5. Discussion

We have presented a hierarchical version of the Gaus-
sian process latent variable model. The Gaussian pro-
cess latent variable model involves a paradigm shift
in probabilistic latent variable models where, rather
than marginalising the latent variables and optimising
the mappings, we marginalise the mappings and op-
timise the latent variables. This makes far easier to
construct hierarchies of these models. The philosophy
of optimising versus marginalising is carried through
to the hierarchical GP-LVM: we maximise with respect
to all the latent variables in the different levels of the
hierarchy.

5.1. Overfitting

Modelling with the GP-LVM is characterised by the
use of very large numbers of ‘parameters’ in the form
of the latent points. In the standard case, the num-
ber of parameters increases linearly as a fraction, q

d ,
of the number of data. As long as q < d (how much
less depends on the data set) problems of overfitting
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Figure 3. High Five example. Two subjects are modelled as they walk towards each other and ‘high five’. The plot shows
the simple hierarchy used to model the data. There is a regressive dynamical prior of the type described in Section 3
placed over the latent space of the root node. The root node then controls the two individual subjects. To illustrate the
model we have taken points at time (i.e we input these values of t into the dynamical model) frames A: 85, B: 114, C:127,
D: 141, E: 155, F: 170, G: 190 and H: 215. These points mapped down through the hierarchy and into the data space. In
each of the plots of the two subjects, Subject 1 is on the right and Subject 2 is on the left.

do not normally occur. However, we are now adding
additional latent variables, do we not now run the risk
of overfitting the data if the hierarchy becomes too
deep? The first point to note is that the upper levels
of the hierarchy only serve to regularise the leaf nodes:
so if the leaf nodes independently do not overfit, nei-
ther will the entire model. In other words, we must
ensure that the leaf nodes each have qi < di where qi

is the number of columns of Xi and di is the dimen-
sionality of Yi. However, by modifying the locations
of latent variables in nodes higher up the hierarchy we
are changing the nature of the regularisation of the
leaf nodes. If unconstrained the model could simply
act in such a way as to remove the regularisation. In
our implementation we attempted to counter this po-
tential problem in two ways. Firstly, we provided a
fixed dynamical prior at the top level. The parame-
ters of this prior were not optimised, so the top level
node is always ‘regularised4’. However, there is the
possibility that this fixed regularisation could be ‘di-

4The same goal could also be achieved through back
constraints (Lawrence & Quiñonero Candela, 2006), but
we did not explore that approach here.

luted’ by noise as we descend the hierarchy. To pre-
vent this happening we constrained the noise variance
of each Gaussian process that was not in a leaf node to
1×10−6, i.e. close to zero but high enough to prevent
numerical instabilities in kernel matrix inverses. This
strategy proved effective in all our experiments.

5.2. Other Hierarchical Models

Given apparent similarities between the model names,
it is natural to ask what is the relationship between the
hierarchical GP-LVM and the hierarchical probabilis-
tic PCA of (Bishop & Tipping, 1998)? The two models
are philosophically distinct. In hierarchical PCA (and
the related hierarchical GTM model of (Tino & Nab-
ney, 2002)) every node in the hierarchy is associated
with a probabilistic model in data space. The hierarchy
is not a hierarchy of latent variables, it is, instead, a
hierarchical clustering of mixture components in a dis-
crete mixture of probabilistic PCA models (or GTM
models). A similar approach could be taken with the
GP-LVM, but it is not the approach we have described
here.
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Figure 5. Combined model of a run and a walk. The skeleton is decomposed as shown in Figure 4. In the plots, crosses
are latent positions associated with the run and circles are associated with the walk. We have mapped three points from
each motion through the hierarchy. Periodic dynamics was used in the latent spaces.

5.3. Applications

We see the hierarchical GP-LVM as an important tool
in several application areas. However, there are two
application areas in which we believe the algorithm
has particular promise. Firstly, the GP-LVM has al-
ready been proposed as a prior model for tracking.
A key problem with constructing such prior models
is that it is difficult to cover the space of all natu-
ral human motions. However, using the hierarchical
model we expect, inspired by language modelling, to
be able to perform a variant of ‘back off’. Depending
on motion, different models could be swapped in at
the top level of the hierarchy, however some actions
will still not be well modelled. In this case we sug-
gest ‘backing off’, which in this context would trans-
late into dropping down the hierarchy and applying
the models in the next layer of the hierarchy indepen-
dently to the data. Another application area where we
see great promise for the model is animation. Through
the hierarchical GP-LVM model different portions of
the a character can be animated separately or jointly
as circumstances demand. Animator time is becom-
ing a dominating cost in both the games and film en-
tertainment industries where computer special effect
techniques are used, through combination of the hier-
archical GP-LVM with appropriate inverse kinematic
techniques (Grochow et al., 2004) we could seek to
ameliorate these costs.
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