

CDS 101/110: Lecture 7.2 Loop Analysis of Feedback Systems

November 11 2016

Goals:

- Why Nyquist Diagrams?
- Gain margin and phase margin
- Examples!

Reading:

• Åström and Murray, Feedback Systems, Chapter 10, Sections 10.1-10.4,

What can you do with a Nyquist Analysis?

Set Up (somewhat artificial):

- Given: P(s)
 - (any unstable roots known)
- Given: C(s)
 - (any unstable roots known)
- **Q**: can negative output feedback stabilize the system (stable $G_{vr}(s)$)?

Possible Solutions:

$$G_{yr}(s) = \frac{PC}{1+PC} = \frac{n_p(s)n_c(s)}{d_p(s)d_c(s)+n_p(s)n_c(s)}$$

- Compute and check poles of G_{yr}
- Find another way to determine existence of unstable poles without computing roots of

$$d_P(s)d_C(s) + n_P(s)n_C(s)$$

The Nyquist plot *logic*

• Poles of $G_{yr}(s)$ are zeros of

$$1 + P(s)C(s) = \frac{d_P(s)d_C(s) + n_P(s)n_C(s)}{d_P(s)d_C(s)}$$

- If $G_{yr}(s)$ is unstable, then it has at least one pole in RHP
- An unstable pole of $G_{yr}(s)$ implies and unstable (RHP) zero of 1 + P(s)C(s)
- Nyquist plot and Nyquist Criterion allow us to determine if 1 + PC has RHP zeros without polynomial solving.

Argument Principle

(underlying Nyquist Criterion)

$$\alpha(s) = \sum_{i=1}^{m} \psi_i(s) - \sum_{j=1}^{n} \phi_j(s)$$

As s moves *clockwise* around Γ , L(s) must rotate around the origin by 2π for each pole inside the contour, and by -2π for each zero inside the contour

 $P \# \mathsf{RHP} \mathsf{poles} \mathsf{of} \mathsf{open} \mathsf{loop} L(s) \pmod{P(s), C(s)} \mathsf{poles}$

N # clockwise encirclements of -1 (from Nyquist plot)

Z # RHP zeros of 1 + L(s)

Then
$$Z_{RHP} = N + P$$

Robust stability: gain and phase margins

Nyquist plot tells us if closed loop is stable, but not how stable

Gain margin

- How much we can modify the loop gain and still have the system be stable
- Determined by the location where the loop transfer function crosses 180° phase

Phase margin

- How much "phase delay" can be added while system remains stable
- Determined by the phase at which the loop transfer function has unity gain

Bode plot interpretation

- Look for gain = 1, 180° phase crossings
- MATLAB: margin(sys)

Nyquist Plot Example #1

$$k = 5, a = 2, b = 3$$

$$P(s) = \frac{1}{(s+1)^3}$$

$$P(s) = \frac{1}{(s+1)^3}$$
 $C(s) = k \frac{s+a}{s+b}$
 $1 < a < b$

Goal #1: Is closed loop system stable?
Goal #2: Does stability vary with gain?

Nyquist Plot Example #1

$$P(s) = \frac{1}{(s+1)^3}$$

$$C(s) = k \frac{s+a}{s+b}$$

$$1 < a < b$$

Nyquist:

 $\bullet P = 0$

• N = +2

 $\bullet Z_{RHP} = 2$

Nyquist Plot Example #1

(alternative analysis without Nyquist)

$$L(s) = \frac{n_P(s)n_C(s)}{d_P(s)d_C(s)} = k \frac{n_P(s)n_{C'}(s)}{d_P(s)d_{C'}(s)} = k \frac{1}{(s+1)^3} \frac{s+a}{s+b}$$

$$G_{yr}(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} = \frac{kP(s)C'(s)}{1 + kP(s)C'(s)} = \frac{k n_P(s)n_{C'}(s)}{d_P(s)d_{C'} + k n_P(s)n_{C'}(s)}$$

Root Locus

The **Root Locus** studies how the poles of $G_{yr}(s)$ vary with k

- When $k \to 0$, the poles of $G_{yr}(s)$ approach the poles of L(s)
- As $k \to \infty$, the poles of $G_{yr}(s)$ approach the zeros of L(s) (or infinity)

For this problem, as k increases, two of the poles of $G_{yr}(s)$ become unstable.

Real Axis (s

Example: Proportional + Integral* speed controller

Nyquist Diagrams

Real Axis

$$P(s) = \frac{1/m}{s + b/m} \times \frac{r}{s + a}$$

$$C(s) = K_p + \frac{K_i}{s + 0.01}$$

Remarks

- \bullet N = 0, P = 0 \Rightarrow Z = 0 (stable)
- Need to zoom in to make sure there are no net encirclements
- Note that we don't have to compute closed loop response

Example: cruise control

$$P(s) = \frac{1/m}{s + b/m} \times \frac{r}{s + a}$$
$$C(s) = K_p + \frac{K_i}{s + 0.01}$$

$$C(s) = K_p + \frac{K_i}{s + 0.01}$$

$$G(s) = \frac{10}{s+10}$$

Effect of additional sensor dynamics

- New speedometer has pole at s = 10 (very fast); problems develop in the field
- What's the problem? A: insufficient phase margin in original design (not robust)

Preview: control design

$$P(s) = \frac{1/m}{s + b/m} \times \frac{r}{s + a}$$

$$C(s) = \alpha \left(K_p + \frac{K_i}{s + 0.01} \right)$$

$$G(s) = \frac{10}{s+10}$$

Approach: Increase phase margin

- Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics
- Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error

