CDS 101/110: Lecture 7.2 |
Loop Analysis of Feedback Systems

November 11 2016

Goals:
* Why Nyquist Diagrams?
* Gain margin and phase margin
* Examples!

Reading:
e Astrom and Murray, Feedback Systems, Chapter 10, Sections 10.1-10.4,



What can you do with a Nyquist Analysis?

d
Set Up (somewhat artificial): . | ;

e Given: P(s) My C(s) Pis) F1 VY
e (any unstable roots known)

e Given: C(s) -1 ¢
e (any unstable roots known)

« Q: can negative output feedback The Nyquist plot logic

stabilize the system (stable G, (s))? + Poles of G,,(s) are zeros of
Possible Solutions: 1 4 P()C(s) = dp(s)dc(s) +np(s)nc(s)
dp(s)dc(s)

G __ PC Ny (s)nc(s) _ _
yr(s) T 14PC dp(s)de(s)+np(s)nc(s)  ° If G,,-(s) is unstable, then it has at

least one pole in RHP

« Compute and check poles of G,
_ _ . * An unstable pole of G,,-(s) implies and
* Find another way to determine existence of unstable (RHP) zero of 1 + P(s)C(s)

unstable poles without computing roots of
* Nyquist plot and Nyquist Criterion

dp(s)dc(s) +np(s)ne(s) allow us to determine if 1 + PC has
RHP zeros without polynomial solving.
2



Argument Principle

(underlying Nyquist Criterion)
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As s moves clockwise around I', L(s) must rotate around
the origin by 2z for each pole inside the contour, and by
— 2 for each zero inside the contour

P # RHP poles of open loop L(s) (from P(s), C(s)poles)
N # clockwise encirclements of -1 (from Nyquist plot)

Z # RHP zeros of 1 + L(S)
Then Zpyp =N+P



Robust stability: gain and phase margins

Nyquist Diagram

Nyquist plot tells us if closed loop is stable, but
not how stable

Gain margin
® How much we can modify the loop gain
and still have the system be stable

® Determined by the location where the loop
transfer function crosses 180" phase

Phase margin
Bode Diagram

o T " .
HOW mUCh phaSe delay Can be added Whlle Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853
system remains stable radisec)
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® Determined by the phase at which the loop
transfer function has unity gain

Bode plot interpretation
® Look for gain = 1, 180° phase crossings

Phase (deg); Magnitude (dB)

A
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® MATLAB: margin(sys)
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Nyquist Plot Example #1

aaaaaaaaaaa

1 st+a
P(S)=Gis  CO =k
1<a<b
s+a
+ b Goal #1: Is closed loop system stable?

Goal #2: Does stability vary with gain?

k(s +a)
(s+1)3(s+b)

L(s) =
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Nyquist Plot Example #1

k=1 k=10
stable S able able
1 .
P(s) = Nyquist:
(s+1)3 P =0
S+ a ° —
C(s) =k N = +2
S + b .ZRHP = 2
1<a<b

I 2 Encirclements
of -1 point

Unstable!
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Nyquist Plot Example #1

(alternative analysis without Nyquist)

L(s) = np(s)nc(s) . k”P(S)nc’(S) — K 1 s+a
VT dp(s)dc(s)  dp(s)der(s)  (s+1)3s+b
Gyr (s) = P(s)C(s) __ kP(s)C'(s) _ knp(s)n.r (s)

1+P(s)C(s) 1+4+kP(s)C'(s) dp(s)d r+knp(s)n r(s)

ooooooooo

The Root Locus studies how the
poles of G,,-(s) vary with k

« When k — 0, the poles of
Gy (s) approach the poles of L(s)

* As k — oo, the poles of G,,.(s)
approach the zeros of L(s) (or
Infinity)

For this problem, as k increases, two

of the poles of G,,,.(s) become
unstable.

Real Axis (seconds



Imaginary Axis

Example: Proportional + Integral* speed controller

.......

Nyquist Diagrams
From: U(1)

Real Axis
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P(s) = 1/ m y 4
s+b/m s+a
K.
C(s)=K_ + ’
) =K, + 001

Remarks
® N=0,P=0>Z=0 (stable)
® Need to zoom in to make sure there
are no net encirclements

® Note that we don’t have to compute
closed loop response



Example: cruise control

d
P(s) = 1/m o
r e u y s+b/m s+a
C(s) P(S) T ©
C(s)=K + L
(5)=K, s+0.01
-G(S) |e
G(s) = 10
Effect of additional sensor dynamics s+10

® New speedometer has pole at s = 10 (very fast); problems develop in the field
® What's the problem? A: insufficient phase margin in original design (not robust)

Bode Diagram
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Nyquist plots
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Preview: congrol design

r e c) %u o(s) _L P(s) = I/m r

s+b/m s+a

K.
C(s K + l
-G(s) | ()@ b S+0.01)
10

G(s) =
Approach: Increase phase margin s +10
® Increase phase margin by reducing gain = can accommodate new sensor dynamics
® Tradeoff: lower gain at low frequencies = less bandwidth, larger steady state error

Bode Diagram
100 T T T ¥
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Nyquist plots
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