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Notes on the kinematics of Inertial Navigation

1 Introduction

These notes review the basic kinematic equations governing inertial navigation, when the
inertial measurement suite consists of an IMU (accelerometers to measure Cartesian motion,
and gyroscopes to measure rotational motion).

2 Spherical Kinematics and Rigid Body Rotations

Motions of a 3-dimensional rigid body where one point of the body remains fixed are termed
spherical motions. A spherical displacement is a rigid body displacement where there is
a fixed point in the initial and final positions of the moving body. It can be shown that
spherical displacements and spherical motions have 3 independent degrees of freedom.

Consider a 3-dimensional rigid body, B. Let C denote the point in B which is fixed during
subsequent spherical motions. Choose a fixed reference frame, F whose origin lies at point C.
To understand what happens to a rigid body during a spherical motion, select an arbitrary
point, P0, in B. Let ~v0 denote the vector from the origin of this fixed reference frame to
P0. I.e., ~v0 denotes the coordinates of P0 as seen by an observer in frame F . Let the body
undergo a spherical displacement. After the displacement, let the new location of the point
P0 be denoted by P1. Similarly, let ~v1 denote the coordinates of P1, as seen in frame F .

Let us assume that the transformation of the points in B during the spherical displacement
can be represented by the action of a 3 × 3 matrix, A, acting on the vector of particle
coordinates:

~v1 = A~v0 .

Because the body is rigid, the distance between the fixed point of the motion (which is also
the origin of the fixed reference frame) and the given particle is constant. That is:

|~v1| = |~v0| .

This implies that:

|~v1|2 = |~v0|2 ⇒ ~vT1 ~v1 = ~vT0 ~v0 ⇒ ~vT0 A
TA~v0 = ~vT0 ~v0.

Since this relationship holds for any choice of P0, it must be true that ATA = I. That is, A
is an orthogonal matrix.

Recall that for matrices A and B, det(AT ) = det(A) and det(AB) = det(A) det(B). Hence,
for an orthogonal matrix A, det(ATA) = det(AT )det(A) = det2(A) = det(I) = 1. Therefore,
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det(A) = ±1 for any orthogonal matrix A. Those orthogonal matrices whose determinant
is +1 are physically associated with rotations, while those whose determinant is −1 are
associated with reflections. We will only be concerned with rotations. Note that the set of
all 3-dimensional rotations forms a group, whose symbol is SO(3).

2.1 Rodriquez’ equation and the Exponential Map

The 3 × 3 rotation matrix R ∈ SO(3) contains nine entries, but only 3 of these entries
are independent. Hence, we need to find suitable parametrizations of SO(3) based on 3
variables. Angle-Axis coordinates are one choice. These coordinates are based on Euler’s
Theorem, which states that “every rigid body rotations is equivalent to a simple rotation
about a fixed axis.” The single scalar φ which quantifies the amount of rotation is one
coordinate, and the 3× 1 unit vector ~ω represents the other two coordinates (since only 2 of
the 3 components of ~ω are independent, given that it is a unit length vector). The rotation
matrix corresponding to rotation φ about rotation axis ~ω can be computed from Rodriguez’
formula:

R(φ, ~ω) = I + (sinφ)ω̂ + (1− cosφ)ω̂2.

where ω̂ is a 3× 3 skey symmetric matrix having the form: 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (1)

where ~ω =
[
ωx ωy ωz

]T
is the unit vector representing the axis of rotation.

Equivalently, one can show that
R(φ, ~ω) = eφω̂

where eM is the matrix exponential of a matrix M . The matrix exponential is defined using
a series expansion having the same form as the scalar exponential:

eφω̂ = I +
φ

1!
ω̂ +

φ2

2!
ω̂2 +

φ3

3!
ω̂3 + · · · .

Noting that ω̂3 = −ω̂, one can show that the matrix exponential simplifies to Rogdriguez’
equation.

2.2 Angular Velocity

Spatial Angular Velocity. Let P denote a particular particle in the body of a rotationally
moving body. Let B ~P denote the position of the particle relative to an observer who is fixed
in the moving body. Let W ~P denote the coordinates of this same particle, as seen by an
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observer in a fixed frame. The velocity of this particle, as seen by the fixed observer, is:

W ~VP =
d

dt

W

~P (t) =
d

dt
(RWB(t)B ~P ) = ṘB

WB
~P = ṘWBR

T
WBR

B
WB

~P (2)

= (ṘWBR
T
WB)W ~P , ω̂sWB

W ~P (3)

where ~ωsWB is termed the spatial angular velocity of the spinning body. The spatial angular
velocity is a 3× 3 skew symmetric matrix Ωs

WB 0 −Ωs
z Ωs

y

Ωs
z 0 −Ωs

x

−Ωs
y Ωs

x 0


This matrix is isomorphic with a 3 × 1 vector, ~Ωs

WB that we will also call (by abuse of
notation) the spatial angular velocity. At each instant, t, one can think of the rotating body
as rotating around the instantaneous axis of rotation

~ωsWB = ||~Ωs
WB||−1 ~Ωs

WB .

with a rate of rotation (or angular velocity)

φ̇ = sign(~Ω)||~Ωs
WB||.

Body Angular Velocity. By definition, we say that the body angular velocity is obtained
by transforming the spatial angular velocity to the body frame:

~Ωb
WB = RT

WB
~Ωs
WB .

3 Inertial Navigation

This section first reviews how to estimate the orientation of an IMU’s reference frame from
gyroscope measurements, and then addresses the problem of position estimation using ac-
celerometer data and the estimated orientation.

3.1 Orientation Estimate

Note that the on-board gyroscopes in a strap-down IMU measure the body angular velocity
in an inertial frame. Let us first consider the case where the vehicle operates in an inertial
frame, and then make small adjustments if the vehicle operates on Earth, which is not a
truly inertial environment (since the Earth is spinning about its axis). These gyroscopic
measurements can be used to update the moving vehicle’s orientation estimate as follows.

Assume that the IMU’s body-fixed reference frame starts off at time t = 0 with initial
orientation R0

WB relative to the fixed observing frame (which might be an inertial frame
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in space, or an observing frame on earth, which is not an an inertial frame). It is often
convenient to choose R0

WB = I. Let us further assume that at time t1 = ∆t, we sample the
IMU gyros, and obtain the 3 angular velocities

~Ω1 =

Ω1
x

Ω1
y

Ω1
z

 .
Assume that ∆t is very small, so that we approximately assume that the axis of rotation
~ω1 = ||~Ω1||−1~Ω1 is fixed over the very small time interval ∆t, and that the body rotates

about that fixed axis by a constant rate of rotation ||~Ω1||. In that case, the IMU reference
frame will be oriented as

Rs
WB(t1) = R0

WBe
∆φ(t1) ω̂(t1) = R0

WBe
Ω̂(t1) ∆t (4)

where ∆φ(t1) = ||~Ω(t1)||∆t. Similarly, at t2 = t1 + ∆t, the body will be oriented at

Rs
WB(t2) = R0

WB e∆φ(t1)ω̂(t1) e∆φ(t2)~ω(t2) = R0
WB eΩ̂(t1)∆t eΩ̂(t2)∆t

If we take the the limit as ∆t→ 0, then it can be shown that

Rs
WB(t) = R0

WB exp

(∫ t

0

Ω(τ) dτ

)
. (5)

3.1.1 Inertial Navigation in practice

In practice, one doesn’t have access to ~Ω(t) as a continuous function, as would be needed

to exactly evaluation Equation (5). Instead, one samples ~Ω(t) at uniform intervals, whose
length is ∆t << 1. If we know the vehicle’s orientation at time tk, then it’s orientation at
time tk+1 = tk + ∆t is given to good approximation by the matrix exponential, following
Equation (4)

RWB(tk+1) = RWB(tk)e
∆φ(tk+1)ω̂(tk+1) (6)

= RWB(tk)
[
I + sin(∆φ(tk+1))ω̂(tk+1) + (1− cos(∆φ(tk+1)))ω̂2(tk+1)

]
where

∆φ(tk+1) = ||~Ω(tk+1||∆t (7)

ω̂(tk+1) = ||~Ω(tk+1)||−1 ~Ω(tk+1) (8)

~Ω(t+ ∆t) = measured body angular velocity vector at time t+ ∆t. (9)

That is, we assume that the instantaneous axis of rotation is fixed during an interval ∆t,
and that the rate of rotation is also constant during this interval.
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3.2 Position Estimate

An accelerometers measures vehicle acceleration in body-centered coordinates, ~ab. To esti-
mate position from the accelerometer data, we first transform this data to the inertial world
coordinate system:

~as(t) = RWB(t) ~ab(t) .

To obtain an estimate of the vehicle’s velocity, ~vsWB(t), at time t

~vsWB = ~vsWB(t = 0) +

∫ t

0

~as(τ) dτ .

while an estimate of the vehicle’s position, ~ps, (in the fixed inertial coordinate system) is
given by

~pWB = ~pWB(t = 0) +

∫ t

0

~vsWB(τ) dτ .

3.3 Position Estimation in Practice

Assuming that the accelerometers are sampled at uniform intervals, spaced by time ∆t, the
vehicle’s spatial velocity and position can be iteratively updated as:

~vsWB(tk+1) = ~vsWB(tk) + (RWB(tk+1)~ab(tk+1) ∆t (10)

~pWB(tk+1) = ~pWB(tk) + ~vsWB(tk+1) ∆t (11)

4 Terrestrial Navigation

A reference observing frame W , which is fixed in the Earth is not truly an inertial reference
frame, since the Earth is moving. Moreover, we must account for gravity on Earth as well.

Adjusting the gyro measurements: To account for the Earth’s spin, we must subtract
the rotation of the Earth from the gyroscope readings (which measure rotations relative to
a fixed inertial frame:

Ωb
WB(t) = Ωb

IB − ωbIE
where Ωb

IB is the measured gyroscopic velocities (which measure the rate of rotation of the
moving body, B, relative to inertial space) and ωbIE is the Earth’s rotation, represented in
the gyroscopic frame. The corrected velocity, Ωb

WB should be used in the formulas above,
whereever the gyroscopic measurements were used.

Note that this effect is small, and may be of a magnitude which is below the sensitity of
cheap gyros. The Earth rotates one revolution (or 2π radians) per day, which has a length
of 24 hours × 3600 secs/hour = 86, 400 secs. Hence, the Earth’s rotational rate is:
||~ωIE|| = 2π/86, 400 sec = 7.27× 10−5 rad/sec = 0.00417 degrees/sec.
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Adjusting the accelerometer measurements:

• The accelerometer signal must be adjusted for the effect of gravity.

~asWB(t) = RWB(t)~abWB(t)− gs(t)

where g(t) is the gravitational acceleration (in the fixed, world, observing grame).

• For more accurate inertial navigation (when the accuracy of the accelerometer is very
good), the spatial acceleration can be ajusted by the Coriolis force: −2ωsIE × ~vsWB,
where ωIE is the Earth’s rotational rate, and ~vsWB is the estimated velocity of the
vehicle relative to a fixed observing terrestrial frame.

• The accelerometer signal can also be adjusted for centripetal acceleration if it has a
very high accuracy: −ωsIE × ωsIE × ~pEB where ωsIE is the Earth’s rotational velocity,
and ~pEB is a vector pointing from the center of the Earth to the origin of the vehicle’s
body fixed reference frame.

5 Issues to consider

Clearly, the robot’s estimate of its position will drift over time, as there multiple sources of
error which can corrupt the position estimation process:

1. Noise in the gyro and/or accelerometers measurements.

2. “Drift” in the gyroscope (this is error in the inertial measurements due to phyisical
processes in the gyro mechanism)

3. Errors in the numerical integration process.

4. Errors in the multiplication of rotation matrices. I.e., due to numerical round-off in
the multiplcation process, the product of rotation matrices may no longer be a rotation
matrix.

5. coupling of errors in the orientation estimate to the position estimate.
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