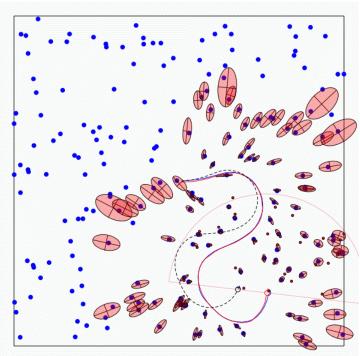
SLAM: Simultaneous Localization & Mapping

Given:

- Robot motion model: $\dot{x} = f(x, u) + \xi$
- The robot's controls, u
- Measurements (e.g., range, bearing) of nearby features: $y=h(x)+\omega$

Estimate:

- Map of landmarks (x_I)
- Robot's current *pose*, x_R , & its path
- Uncertainties in estimated quantities



$$\vec{x} = \begin{bmatrix} \vec{x}_R \\ \vec{x}_M \end{bmatrix} = \begin{bmatrix} \vec{x}_R \\ \vec{x}_{L_1} \\ \vdots \\ \vec{x}_{L_N} \end{bmatrix}$$
Robot state

Landmark positions

Estimation & Optimal (Kalman) Filtering

Observer

Process Dynamics Measurement Equation

Given

- $\dot{x} = f(x, u)$
- y = h(x)
- Calculate, infer, deduce the state x from measurements y

• E.g. the Luenberger Observer
$$\dot{x} = Ax + Bu + L(y - Cx)$$

Estimator

• Given
$$\dot{x} = f(x, u) + \xi$$
 $y = h(x) + \omega$

$$y = h(x) + \omega$$

- ξ represents *process noise/uncertainty* (e.g., gust or unmodeled effects)
- \bullet represents measurement noise/uncertainty
- Estimate (in an optimal) way the state x(t) based on
 - measurements $y(\tau)$, $\tau \le t$
 - dynamic and measurement models
 - noise model(s).

The *Kalman* Filter

Applies rigorously to:

Linear dynamical system

$$x_{k+1} = A_k x_k + B_k u_k + \xi_k$$

- x_k = is the system state at time t_k (we want to estimate this)
- u_k = control input at t_k (known)
- ξ_k is the "process noise"
- Linear measurement equation:

$$y_{k+1} = H_k x_k + \omega_k$$

- H_k = measurement matrix
- ω_k = measurement noise
- Stochastic disturbances:
 - ξ and ω are zero mean, white, Gaussian random processes

Note: analogous theory for $x(t) = Ax(t) + Bu(t) + \xi(t)$; $y(t) = Hx(t) + \omega(t)$

The *Kalman* Filter

The Kalman Filter (KF) aims to

- Find the "best" (min. variance) estimate of the state x at time t_k given
 - the dynamic and measurement models,
 - a characterization of the disturbances,
 - the measurements $y_0, y_1, ..., y_k$
- Estimate the "uncertainty" in the state estimate.
- **Notation:** $\hat{x}_{k|j}$ = the estimate of state x at t_k given measurements and information up until time t_i
 - $k = j \implies$ KF state estimate
 - $k > j \Rightarrow$ predictor
 - $k < j \Rightarrow$ Kalman "smoother"

Recursive Structure of the KF

The KF has a **2-step** structure:

- Dynamic (time) update)
 - $\bullet \ \hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + \underline{B}_k \underline{u}_k \checkmark$
 - $\Sigma_{k+1|k} = A_k \Sigma_{k|k} A_k^T + B_k Q_k B_k^T$
- Measurement Update

"residual," "innovation"

"covariance" of the estimate

•
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1} (y_{k+1} - H_{k+1} \hat{x}_{k+1|k})$$

"Kalman Gain"

•
$$\Sigma_{k+1|k+1} = \Sigma_{k+1|k} - \Sigma_{k+1|k} H_{k+1}^{T} (H_{k+1} \Sigma_{k+1|k} H_{k+1}^{T} + R_{k+1})^{-1} H_{k+1} \Sigma_{k+1|k}$$

$$= (I - K_{k+1} H_{k+1}) \Sigma_{k+1|k} = \Sigma_{k+1|k} (I - H_{k+1}^{T} K_{k+1}^{T})$$

Where the "Kalman Gain" is:

-
$$K_{k+1} = \Sigma_{k+1|k} H_k^T \left(H_{k+1} \Sigma_{k+1|k} H_{k+1}^T + R_{k+1} \right)^{-1}$$

"How much do I trust the model?"

"How much do I trust the measurements?"

Usefulness of the Kalman Filter

- Smooths (averages) noisy measurements, or multiple sensory inputs (sensor fusion)
- Recursive structure: next state estimate is only a function of the most recent measurement and previous estimate
 - Good for real time implementation
- Provides an uncertainty measure about its output.
 - Useful for fault detection
 - Make better decisions for autonomy

Let's derive the Kalman Filter in 3 steps:

- Step #1: assume NO process or measurement noise.
- Step #2: incorporate process noise
- Step #3: incorporate measurement noise

Case 1: No Noise

Dynamics & Measurement:

$$x_{k+1} = A_k x_k + B_k u_k; \quad y_{k+1} = H_{k+1} x_{k+1}$$

- Assume that H_k is full rank
- Assume we are given $\hat{x}_{k|k}$ (recursive derivation)

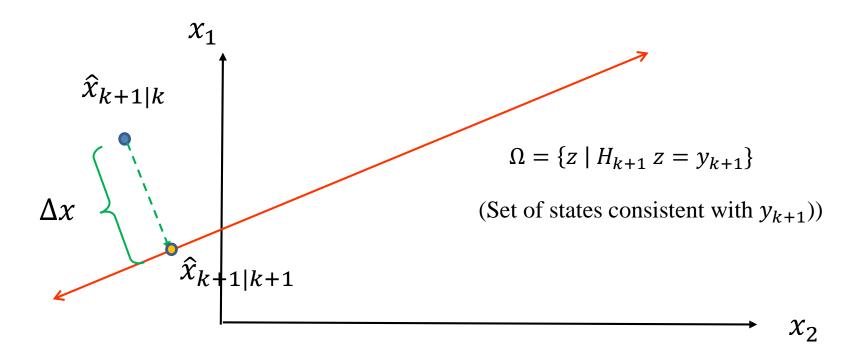
Prediction Step:
$$\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k$$

Measurement Step:
$$y_{k+1} = H_{k+1}x_{k+1}$$

• The true state at t_{k+1} must lie in Ω

$$\Omega = \{ z \mid H_{k+1}z = y_{k+1} \}$$

• Estimation principle: the best state estimate is the point in Ω that is most consistent with the dynamical prediction.



- $\bullet \ \Delta x = \hat{x}_{k+1|k+1} \hat{x}_{k+1|k}$
- For Δx to be the *shortest* vector (closest estimate in Ω , Δx must be \perp to Ω
- Solution #1:
 - $\hat{x}_{k+1|k+1} = argmin(\Delta x)^2$ s.t. $\hat{x}_{k+1|k+1} \in \Omega$

Solution #1: Constrained Optimization

(not the textbook solution)

- Constrained Lagrangian: $L(x,\lambda) = (x \hat{x})^2 + \lambda^T (y Hx)$
 - Notation: $x \equiv \hat{x}_{k+1|k+1}$; $\hat{x} \equiv \hat{x}_{k+1|k}$; $y \equiv y_{k+1}$
 - Necessary Conditions: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial \lambda} = 0$

•
$$\frac{\partial L}{\partial x} = x - \hat{x} - H^T \lambda = 0 \implies x = \hat{x} + H^T \lambda$$
 (*)

•
$$\frac{\partial L}{\partial \lambda} = y - Hx = 0 = y - H(\hat{x} + H^T \lambda) \Rightarrow$$

$$\lambda = (HH^T)^{-1}(y - H\hat{x})$$

• Substituting λ into (*) yields the result: innovation

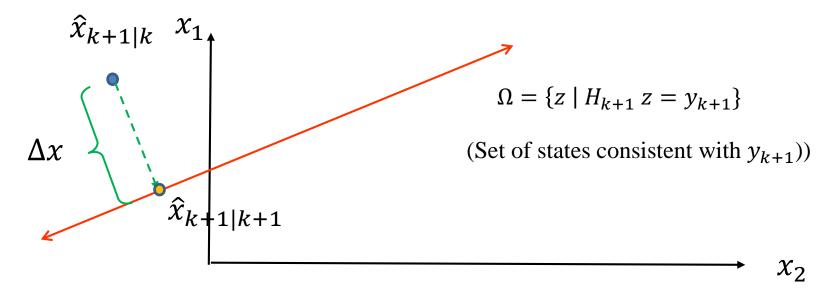
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + H_{k+1}^T (H_{k+1} H_{k+1}^T)^{-1} (y_{k+1} - H_{k+1} \hat{x}_{k+1|k})$$

Dynamic Prediction Kalman "gain"

Predicted measurement

Solution #2: Linear Algebra

(the textbook solution: parallels Kalman's method and later steps)



if $\Delta x \perp \Omega$, then $a^T \Delta x = 0$ for some a $|| \Omega$

- $a \mid\mid \Omega \text{ iff } H_{k+1}a = 0 \text{ (i.e., } a \text{ in } Null(H_{k+1}) \text{)}$
- $b \perp Null(H_{k+1})$ if $b \in column(H_{k+1}^T)$
- Since $\Delta x \perp \Omega$, $\Delta x = H_{k+1}^T \gamma$ for some γ

Solution #2: Continued

- Innovation (again): $v = y_{k+1} H_{k+1} \hat{x}_{k+1|k}$
- Assume $\gamma = K \nu$ (K is nearly the Kalman gain)
- Find *K* such that

$$y_{k+1} = H_{k+1}(\hat{x}_{k+1|k} + \Delta x)$$

- That is, find $\Delta x = H_{k+1}^T \gamma = H_{k+1}^T K \nu$ that is $\perp \Omega$
- Rearrange (**):

$$H_{k+1}\Delta x = y_{k+1} - H_{k+1}\hat{x}_{k+1|k} = \nu$$

$$H_{k+1}(H_k^{T+1}K\nu) = \nu \quad \Rightarrow \quad K = (H_{k+1}H_{k+1}^T)^{-1}$$

• Putting all the pieces together:

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + \Delta x = \hat{x}_{k+1|k} + H_{k+1} (H_{k+1} H_{k+1}^T)^{-1} v$$

$$= \hat{x}_{k+1|k} + H_{k+1} (H_{k+1} H_{k+1}^T)^{-1} (y_{k+1} - H_{k+1} \hat{x}_{k+1|k})$$

Summary of Case 1: No Noise

Prediction Step:
$$\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k$$

Measurement Step:

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + H_{k+1}^T (H_{k+1} H_{k+1}^T)^{-1} (y_{k+1} - H_{k+1} \hat{x}_{k+1|k})$$

Practical Reality: This is *not* a good observer

- Not guaranteed to converge in all cases
- Assumes measurement relation is perfect
- Doesn't correct well for errors parallel to Ω

Case 2: Noise in Dynamic Model

Dynamics & Measurement:

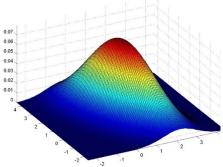
$$x_{k+1} = A_k x_k + B_k u_k + \xi;$$
 $y_{k+1} = H_{k+1} x_{k+1}$

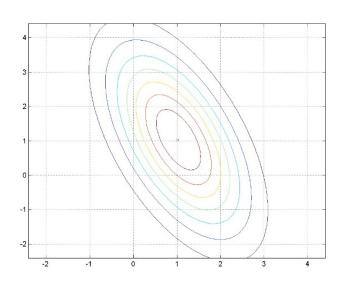
• H_k is full rank and $\hat{x}_{k|k}$ given

Prediction Step: $\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k$

• But $\hat{x}_{k+1|k}$ is now a *random variable* (zero mean Gaussian)

$$p(x) = \frac{1}{(2\pi)^{n/2} |P|^{1/2}} e^{\frac{-1}{2} ((x-\hat{x})^T P^{-1} (x-\hat{x}))}$$





Case 2: Noise in Dynamic Model

Covariance of Dynamic prediction:

$$P_{k+1|k} = E\left[(x_{k+1} - \hat{x}_{k+1|k})(x_{k+1} - \hat{x}_{k+1|k})^T \right]$$

Substitute
$$x_{k+1} = A_k x_{k|k} + B_k u_k + \xi_k$$

$$\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k$$

- Use fact that expectation is linear and that x_k and $\hat{x}_{k|k}$ are independent of ξ_k
- $\bullet \quad P_{k+1|k} = A_k P_{k|k} A_k^T + V_k$

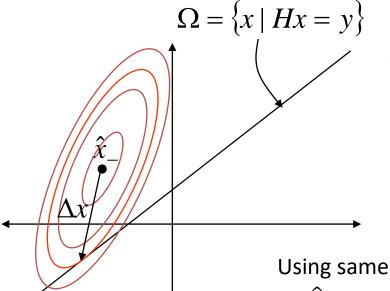
Measurement Step: $y_{k+1} = H_{k+1}x_{k+1}$

• The true state at t_{k+1} must lie in Ω

$$\Omega = \{ z \mid H_{k+1}z = y_{k+1} \}$$

Finding the correction (geometric intuition)

Given the prediction $\hat{x}_{k+1|k}$, the covariance $P_{k+1|k}$ and the measurement y_{k+1} , find Δx so that $\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + \Delta x$ is the *best* or *most probable* estimate. I.



$$p(x) = \frac{1}{(2\pi)^{n/2} |P|^{1/2}} e^{\frac{-1}{2} ((x-\hat{x})^T P^{-1} (x-\hat{x}))}$$

The most probable Δx is the one that

- minimizes $\Delta x^T P_{k+1|k}^{-1} \Delta x$ (since this maximizes p(x)
- while $x_{k+1|k+1} \in \Omega$
- $\Delta x^T P_{k+1|k}^{-1} \Delta x$ is the Mahalonobis Distance

Using same analysis as Solution 1 or 2 of Case 1, yields:

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1}[y_{k+1} - H_{k+1} \,\hat{x}_{k+1|k}]$$

$$K_{k+1} = P_{k+1|k} H_{k+1}^T [H_{k+1} P_{k+1|k} H_{k+1}^T]^{-1}$$

Case 3: Add Measurement Noise

Dynamics & Measurement:

$$x_{k+1} = A_k x_k + B_k u_k + \xi;$$
 $y_{k+1} = H_{k+1} x_{k+1} + \omega_{k+1}$

• H_k is full rank, $\omega_{k+1} \sim N(0, R_{k+1})$ and $\hat{x}_{k|k}$ given

Prediction Step: Same as Step #2

- $\bullet \quad \hat{x}_{k+1|k} = A_k \, \hat{x}_{k|k} \, + B_k u_k$
- $\bullet \quad P_{k+1|k} = A_k P_{k|k} A_k^T + V_k$

Measurement Update:

- No longer a "crisp" observation constraint. We only know that the output is draw from a Gaussian distribution centered at y_{k+1}
- Look for *most likely output*

Finding the correction (with output noise)

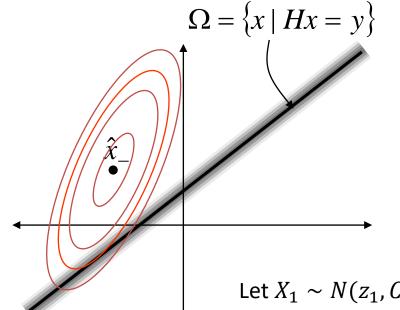
$$y = Hx + w$$

Since you don't have a hyperplane to aim for, you can't solve this with algebra!

You have to solve an optimization problem

The most likely output is the *most likely* point

- the measurement $y_{k+1} = H_{k+1}x_{k+1} + \omega_{k+1}$ is the sum of two *independent* random variables.
- most likely variable maximizes the joint probability of these two random variables, which is their product.



Let $X_1 \sim N(z_1, C_1)$ and $X_1 \sim N(z_2, C_2)$. Then $p(x_1)p(x_2) =$

$$N(z_1 + C_1(C_1 + C_2)^{-1}(z_2 - z_1), C_1 - C_1(C_1 + C_2)^{-1}C_1$$

Recursive Structure of the KF

The KF has a **2-step** structure:

- Dynamic (time) update)
 - $\bullet \hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k \checkmark$
 - $\bullet \ \Sigma_{k+1|k} = A_k \Sigma_{k|k} A_k^T + V_k$
- Measurement Update

"residual," "innovation"

"covariance" of the estimate

•
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1} (y_{k+1} - H_{k+1} \hat{x}_{k+1|k})$$

"Kalman Gain"

•
$$\Sigma_{k+1|k+1} = \Sigma_{k+1|k} - \Sigma_{k+1|k} H_{k+1}^{T} (H_{k+1} \Sigma_{k+1|k} H_{k+1}^{T} + R_{k+1})^{-1} H_{k+1} \Sigma_{k+1|k}$$

$$= (I - K_{k+1} H_{k+1}) \Sigma_{k+1|k} = \Sigma_{k+1|k} (I - H_{k+1}^{T} K_{k+1}^{T})$$

Where the "Kalman Gain" is:

-
$$K_{k+1} = \Sigma_{k+1|k} H_k^T \left(H_{k+1} \Sigma_{k+1|k} H_{k+1}^T + R_{k+1} \right)^{-1}$$

"How much do I trust the model?"

"How much do I trust the measurements?"