SLAM: Simultaneous Localization &
Mapping
Given: -7

* Robot motion model: x = f(x,u) + ¢

= The robot’s controls, u

= Measurements (e.g., range, bearing) 1* -
of nearby features: y=h(x)+w

Estimate:
= Map of landmarks (x,)
= Robot’s current pose, Xg, & its path X Xr | Robot state
. . . . .. N X X
= Uncertainties in estimated quantities X = [;] =" | | Landmark
M . —
2, positions
N



Estimation & Optimal (Kalman) Filtering

D ' E i
Observer ProcessA ynamics I\/Ieasurenkent quation

y = h(x)

= Calculate, infer, deduce the state X from measurementsy

4 \
= Given x = f(x,u)

= E.g. the Luenberger Observer x =Ax + Bu+ L(y — Cx)

Estimator
= Given x=f(x,u)+¢& y=h(X)+w
= £represents process noise/uncertainty (e.g., gust or uynmodeled effects)
" wrepresents measurement noise/uncertainty

= Estimate (in an optimal) way the state X(t) based on
= measurements y(7), T <t
= dynamic and measurement models
= noise model(s).



The Kalman Filter

Applies rigorously to:
= Linear dynamical system
Xp+1 = AxXy + Bruy + Sk
" x5 = is the system state at time t, (we want to estimate this)
" U= control input at £;, (known)
= &is the “process noise”
" Linear measurement equation:
Vi+1= HyXp + Wi
" Hj= measurement matrix
" W= measurement noise

= Stochastic disturbances:

= £Zand w are zero mean, white, Gaussian random processes

Note: analogous theory for x(t) = Ax(t) + Bu(t) + £(t); y(t) = Hx(t) + w(t)



The Kalman Filter

The Kalman Filter (KF) aims to

" Find the “best” (min. variance) estimate of the state x at time ¢,
given

= the dynamic and measurement models,
= a characterization of the disturbances,

= the measurements y,, V1, ..., Vi
= Estimate the “uncertainty” in the state estimate.

= Notation: fk|j= the estimate of state x at t;, given measurements
and information up until time t;

" k=j = KFstate estimate
"k >j = predictor

" k<j = Kalman “smoother”



Recursive Structure of the KF

The KF has a 2-step structure:

— Dynamic (time) update) K “covariance” of the estimate

. xk+1|k = Akxkuc_ '_'_‘ Byuy - 4

“re}*\s.idual innovation”

— Measurement Update

* Xpi1jk+1 = Xis1jk T K1 (Vi1 — Hk+155k+1|k)
“Kalman Gain”

_ T T -1
¢ Zprrper1 = Zkaafk — SrareHp1(Hir1Zre1cHirr + Riew1)  HegaZraapk

= — Ky 1Hi11)Zks1k = s — Hyt1Kis1)

Where the “Kalman Gain” is:

1
- Ki41 = Zpy1Hi (Hk+12k+1|ka+1 + Ryy1)

“How much do | trust _— ~ "How much do | trust
the model?” the measurements?”




Usefulness of the Kalman Filter

= Smooths (averages) noisy measurements, or multiple
sensory inputs (sensor fusion)

= Recursive structure: next state estimate is only a function of
the most recent measurement and previous estimate

= Good for real time implementation

= Provides an uncertainty measure about its output.
= Useful for fault detection
= Make better decisions for autonomy

Let’s derive the Kalman Filterin 3 steps:
= Step #1: assume NO process or measurement noise.
= Step #2: incorporate process noise

= Step #3: incorporate measurement noise



Case 1: No Noise

Dynamics & Measurement:

Xi+1 = ApXe + BrUy; Vi1 = Her1Xk41
e Assume that Hy is full rank
 Assume we are given Xy, (recursive derivation)

Prediction Step: Xps1k = Ak X + By

Measurement Step: viiq = Hpp1Xk+1

e The true state at t; ., must lie in Q

O =1{z| Hg+1Z = Y41}
o Estimation principle: the best state estimate is the point in
() that is most consistent with the dynamical prediction.



Q={z|Hgt1 2 = Yi41}

(Set of states consistent with yy 1))

v
=
N

* AX = Xpy1jk+1 — Xk+1|k

» For Ax to be the shortest vector (closest estimate in Q,
Ax must be L to Q

e Solution #1:

A _ . 2 A
* Xpt1jk+1 = argmin (Ax)* s.t. Xyipqpee1 € Q



Solution #1: Constrained Optimization

(not the textbook solution)

 Constrained Lagrangian: L(x,A) = (x — %)% + AT(y — Hx)

* Notation: x = Xpyq1k+17 X = Xpg1jir Y = Viert

.. dL _ dL _
* Necessary Conditions: T a1 0
+ Z=x-2-H"A=0 > x=2+H"2 (%)
L -
oazy—Hx=O=y—H(x+HTA) =
A= (HHT) (v — H)
 Substituting A into (*) yields the result: innovation

\

1/
Xk+1lk+1 = Xk+1|k T Hk+1(Hk+1Hk+1) (Vk+1 — Hi1 Xiet1)x)
\ )] \ ) \ )
Y )\ Y

Dynamic Prediction Kalman “gain” Predicted measurement




Solution #2: Linear Algebra

(the textbook solution: parallels Kalman’s method and later steps)

Xk+1|k X1,

O ={z|Hygs12 = Y41}

(Set of states consistent with y; 1))

1k +1

if Ax L Q,thena’Ax =0 forsomea || O
e all Q iff H,,ia=0 (i.e.,ain Null(Hy;+1))
e b L Null(Hyyq) ifb € column(HL,,)

 Since Ax L Q, Ax = Hf,,y for some y



Solution #2: Continued

Innovation (again): V = Yi+1 — Hep1 X541k
Assume y = Kv (K s nearly the Kalman gain)
Find K such that

Vi+1 = Hip1 X1k + A%)
e Thatis, find Ax = H{,,y = H.,Kv thatis L
Rearrange (**):
Hii1Ax = yriq1 — Hep1 Xep1 e =V
Hei(HeT'Kv) =v = K = (Hk+1HIZ+1)_1
Putting all the pieces together:

1
N\ - N\ - N\ T
Rkr1jk+1 = Zrape + A% = Rpqpe + Hear (Her1Higr) v

A -1 9
= Ries1k + Herr(Her1Hir1)  Uker — Hiern Rierape)



Summary of Case 1: No Noise

Prediction Step: X1k = Ak X + By

Measurement Step:

~1
Xk+1lk+1 = Xg+1k T Hiv1(Her1His1)  (Vke1 — Hiwa Xk+1|k)

Practical Reality: This is nota good observer
 Not guaranteed to converge in all cases
e Assumes measurement relation is perfect

 Doesn’t correct well for errors parallel to Q



Case 2: Noise in Dynamic Model

Dynamics & Measurement:

Xp+1 = Apxy + Bruy +&;

* Hy is full rank and Xy, given

Prediction Step:

Xi+1|k = Ak Xkjk + Brug

Yi+1 = Hipp1 Xk 41

* But X1k IS now a random variable (zero mean Gaussian)

1

p(x) =

e
(272')n/2|P|1/2

‘71((x—>“<)T P (x-))




Case 2: Noise in Dynamic Model

Covariance of Dynamic prediction:
A ~ T
Pryqk = E [(xk+1 — Rper1) (k1 — Rvajr) ]

Substitute Xik+1 — Ak xk|k + Bkuk + fk
Xps1lk = Ak Xgx + Brug
* Use fact that expectation is linear and that x,and Xy, are

Independent of &,
* Priijr = AxPriAx + Vi

Measurement Step: viiq = Hrp1Xk+1

e The true state at t; ., must lie in Q
O =1{z| Hg+1Z = Y41}



Finding the correction (geometric intuition)

Given the prediction Xy 1k, the covariance Py 1, and the measurement
Vie+1, find Ax so that Xy 41k +1 = Xk41)x + AX is the best or most probable
estimate. |I.

1 _71((x—>“<)T P(x-))
(27Z')n/2|P|1/2 €

p(x) =
Q= {x|Hx =y}

A

The most probable Ax is the one that
* minimizes AxTPk_JrlllkAx (since this
maximizes p(x)
* while xXp;q k41 € O
/- * Ax"Pi}yAx is the Mahalonobis Distance

.
>

A

Using same analysis as Solution 1 or 2 of Case 1, yields:

Xes1k+1 = Xk+1jk T Kes1Vi+1 = Hir1 Xes1ixd

-1
- T T
Kalman Filter Introduction Ki41 = Pk+1|ka+1[Hk+1 Pk+1|k Hk+1]



Case 3: Add Measurement Noise

Dynamics & Measurement:

Xp41 = ApXp + Brug + & Vie1 = Hygp1 X1 + Wg41

* Hy isfull rank, wyyq ~ N(0, Ri41) and Xy, given

Prediction Step: Same as Step #2
* Xg+1jk = Ak Xije + Breug
* Priipr = AxPrrAr + Vi

Measurement Update:
* No longer a “crisp” observation constraint. We only know that the
output is draw from a Gaussian distribution centered at y; .,
o Look for most likely output



Finding the correction (with output noise)

y=Hx+w

Since you don’t have a hyperplane to
aim for, you can’t solve this with algebra!

You have to solve an optimization problem
Q= {x|Hx =y}
The most likely output is the most likely point
o the measurement y;.1 = Hy41Xk4+1 +
wy+1 IS the sum of two independent random
variables.
» most likely variable maximizes the joint
probability of these two random variables,
which is their product.

v

A

Let X; ~ N(z4,C;) and X; ~ N(z,,C5). Then p(x,)p(x,) =

N(zy + Ci(Cy + C) Mz — 21),C; — C1(CL + C) MG



Recursive Structure of the KF

The KF has a 2-step structure:

— Dynamic (time) update) K “covariance” of the estimate

. xk+1|k = Akxkl_lg '_'_‘ Byup -

“refidual innovation”

— Measurement Update

* Xpi1jk+1 = Xis1jk T K1 (Vi1 — Hk+1fk+1|k)
“Kalman Gain”

_ T T -1
¢ Zprrper1 = Zkaafk — SrareHp1(Hir1Zre1cHirr + Riew1)  HegaZraapk

= — Ky 1Hi11)Zks1k = s — Hyt1Kis1)

Where the “Kalman Gain” is:

1
- Ki41 = Zpy1Hi (Hk+12k+1|ka+ + Ryy1)

“How much do | trust / ~— "How much do I trust
the model?” the measurements?”
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