
CDS 101/110 Homework #7 Solution

Problem 1 (CDS 101, CDS 110): (15 points)

From (11.10),

ki =
a

P (a)
= a(1− a)2

Note that the above equation is unbounded, so it does not make sense to talk about maximum in general.
In this problem, we will assume that a ≤ 1.

Then, the maximum is given by a = 1/3 which gives ki = 0.148.

The closed loop poles of the system are −1/3, and −4/3.

The open loop poles are 0 an 1. Note that −1/3 is larger than 0 in magnitude, therefore it is not a dominant
closed loop pole.

From (11.7), k′i = 0.25.
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(a) Using a = 1/3
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(b) Using (11.7)

Note that there is a small overshoot when using k′i.

Code:

s = tf('s');
P = (s+1)ˆ(-2);

% When a = 1/3
a = 1/3;
ki1 = a*(1-a)ˆ2;
C1 = ki1/s;
CLP1 = 1/(1+P*C1);
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figure
step(CLP1)

% When using (11.7)
ki2 = 0.25;
C2 = ki2/s;
CLP2 = 1/(1+P*C2);
figure
step(CLP2)

Problem 2 (CDS 101, CDS 110): (15 points)

The systems are simulated using Simulink.

(c) Without anti-windup (d) With anti-windup

Figure 1: Block diagram of the feedback systems in Simulink

The responses are shown below when kt = 1
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Step = 1
Step = 1.5
Step = 3

With windup protection, the responses have a smaller overshoot. Furthermore, the responses are similar
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when the step input magnitude is 1 because the controller is not saturated in this case. When the step input
magnitude becomes larger, the overshoot due to integral windup becomes larger, thus, the windup protection
plays an more important role.

Code:

kt = 1;
stoptime = '20';

stepMagnitude = 1;
simOut = sim('problem11 10a','ReturnWorkspaceOutputs','on', ...
'StopTime', stoptime);
outputs = simOut.get('yout');
x1=(outputs.getElement(1).Values);

simOut = sim('problem11 10b','ReturnWorkspaceOutputs','on', ...
'StopTime', stoptime);

outputs = simOut.get('yout');
y1=(outputs.getElement(1).Values);

stepMagnitude = 1.5;
simOut = sim('problem11 10a','ReturnWorkspaceOutputs','on', ...

'StopTime', stoptime);
outputs = simOut.get('yout');
x2=(outputs.getElement(1).Values);

simOut = sim('problem11 10b','ReturnWorkspaceOutputs','on', ...
'StopTime', stoptime);

outputs = simOut.get('yout');
y2=(outputs.getElement(1).Values);

stepMagnitude = 3;
simOut = sim('problem11 10a','ReturnWorkspaceOutputs','on', ...

'StopTime', stoptime);
outputs = simOut.get('yout');
x3=(outputs.getElement(1).Values);

simOut = sim('problem11 10b','ReturnWorkspaceOutputs','on', ...
'StopTime', stoptime);

outputs = simOut.get('yout');
y3=(outputs.getElement(1).Values);

cp = lines(3);

figure
plot(x1,'Color',cp(1,:)); hold on; plot(x2, 'Color',cp(2,:)); plot(x3, 'Color',cp(3,:));
plot([0 20],[1 1],':','Color',cp(1,:));
plot([0 20],[1.5 1.5],':','Color',cp(2,:));
plot([0 20],[3 3],':','Color',cp(3,:));
plot(y1,'--','Color',cp(1,:)); plot(y2,'--','Color',cp(2,:)); plot(y3,'--','Color',cp(3,:));
title('Without windup protection (solid), with windup protection (dashed)')
xlabel('Time');
ylabel('Responses');
legend('Step = 1', 'Step = 1.5', 'Step = 3')

Problem 3 (CDS 110): (30 points)
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(a) The bode plot of the plant P (s) is given by the blue line Figure 2. The triangle shows the steady
state requirement at 20 log 20dB. The blue box shows the tracking error requirement up to 2π rad/s
at 20 log 100dB. The red box shows the phase margin requirement at 30 degree.

(b) We want to design a controller such that L(s) = P (s)C(s) is above the blue box with zero frequency
gain at the triangle, and a phase margin above the read box.

The steady state frequency of the P (s) is approximately −10dB. So, we can set the proportional gain
to kp = 300 ∼ 50dB so that L(s) is approximately 40dB in steady state. To obtain the required
phase margin, we can include a derivative term into the controller at frequency ωd = 20π rad/s (i.e.
kd = kp/ωd = 15/π) that will shift the phase margin to approximately 36 degree.

So, controller is C(s) = 300 + 15/πs. We do not need the integral term in this case. The yellow line
in Figure 2 shows that L(s) satisfies all the requirements drawn for part(a).
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(c) The frequency response and step response are shown in the figure.
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(b) Step response

The steady state under step input is given by

lim
s→0

L(s)

1 + L(s)
= lim

s→0

0.0567s3 + 3.622s2 + 4.627s+ 55.13

0.002256s4 + 0.06145s3 + 3.695s2 + 4.701s+ 55.67
∼ 0.9903

Thus, the steady state error is less than 1%.

The rise time is 0.0259s (10% - 90%), the overshoot is 41.81, and the settling time is 0.2656s (2%).
These values can be estimated from the step response.

Code:

s = tf('s');

g = 9.8;
m = 1.5;
c = 0.05;
l = 0.05;
J = 0.0475;
r = 0.25;

P = r/(J*sˆ2 + c*s + m*g*l);

% part (a)
figure(1)
margin(P)

% part (b)
kp = 300;
wd = 2*pi*10;
kd = kp/wd;
wi = 0;
ki = kp*wi;

C = kp+kd*s+ki/s;
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figure(2)
margin(P*C)

% part (c)
CLP = P*C/(1+P*C);

figure(3)
margin(CLP)

figure(4)
step(CLP)
stepinfo(CLP)

Problem 4 (CDS 110): (20 points)

The transfer function of the full system is given by

P (s) = C(sI −A)−1B =
kI(cs+ k)

s2(J1J2s2 + kd(J1 + J2)s+ k(J1 + J2))

For low frequencies (s is small), the transfer function can be approximated by

P (s) =
kI

(J1 + J2)s2
,
bp
s2
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Figure 3: Blue - real model, red - approximate model

Note that the approximated model and the real model are pretty similar up to about ω = 0.12 rad/s.

A PD controller has the form C(s) = kp + kds. Thus, the characteristics polynomial of the closed loop
transfer function is given by the numerator of 1 + P (s)C(s) which is

s2 + bpkds+ bpkp
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The desired closed loop characteristic polynomial from the given poles is s2 + 2ζω0s+ ω2
0 . Thus,

kp =
ω2
o

bp
kd =

2ζω0

bp

With low pass filter, the controller becomes

C(s) =
kp + kds

1 + sTf + s2T 2
f /2

where Tf = kd/(Nkp) and N = 5 is chosen for the simulation. This is arbitrary.

To obtain a well damped response we choose ζ = 0.8 and it remains to find a suitable value of the design
parameter ω0. A large value of ω0 gives a fast response. When the second order approximated model is
valid, response time increases inversely with ω0 and so does the control signal, because the real part of the
poles of both P (s) and C(s) scale linearly with ω0.

The frequency range where the model is valid (ω ≤ 0.12) gives a bound on possible values of ω0. Note the
oscillation frequency is ω0

√
1− 0.82 = 0.6ω0. Requiring that this frequency be less than 0.12 we find that a

reasonable upper limit of the design parameter is ω0 = 0.2 and a 2% settling time of about 50s.

To check the results, simulate the closed loop system with full model when ω0 = 0.08, 0.2.
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(a) Step response
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(b) Nyquist diagram

Figure 4: Blue - ω0 = 0.08, red - ω0 = 0.2

You can see that the systems are stable for both cases but less so when ω0 is larger. Oscillation is observed
when ω0 = 0.2. The stability margin is smaller when ω0 = 0.2. The settling time is aprroximately 47s when
ω0 = 0.08, and 50s when ω0 = 0.2. We can conclude that the system can be controlled with a PD controller
provided that the requirements on the response time are not too stringent.

Comparing with the step response using state feedback from Exercise 7.12, the response time using state
feedback is approximately one order of magnitude smaller.
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Figure 5: Step response from Exercise 7.12

Note that the model used for state feedback is valid for higher frequency. Therefore, the controller can make
the system response faster with larger magnitude of u.
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