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Abstract. A mobile robot exploring an unknown environment has no absolute frame of reference
for its position, other than features it detects through its sensors. Using distinguishable landmarks
is one possible approach, but it requires solving the object recognition problem. In particular, when
the robot uses two-dimensional laser range scans for localization, it is difficult to accurately detect
and localize landmarks in the environment (such as corners and occlusions) from the range scans.

In this paper, we develop two new iterative algorithms to register a range scan to a previous
scan so as to compute relative robot positions in an unknown environment, that avoid the above
problems. The first algorithm is based on matching data points with tangent directions in two
scans and minimizing a distance function in order to solve the displacement between the scans.
The second algorithm establishes correspondences between points in the two scans and then solves
the point-to-point least-squares problem to compute the relative pose of the two scans. Our methods
work in curved environments and can handle partial occlusions by rejecting outliers.
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1. Introduction

Previous research in mobile robotics has typically addressed several types of
problems. The first is path planning in the case of a perfectly known environment
and perfect sensing. The optimality criterion in this class of problems is the
minimization of the cost for traversal between a start and an end position, while
avoiding obstacles [20]. The second type of problem is exploration of an unknown
world with perfect range sensing and odometry information [25]. Here the issues
are primarily the complete coverage of the environment and the complexity of
the algorithm as a function of the complexity of the environment (number of
vertices and edges of objects).

The third type of problem is path execution within a known real environ-
ment. The focus here is typically on the sensing required to accurately execute
a preplanned path, and the key problem is robot self-localization (the ‘where
am I’ problem). One primary issue in solving this problem is how to match
sensed data (vision, sonar, laser, infrared etc.) against map information. A com-
prehensive collection of literature in this area can be found in [7, 15]. The robot
self-localization problem can be addressed either by metric means, by ensuring
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that the difference between the robot’s actual position and the position where the
robot thinks it is remains small and bounded, or by qualitative and topological
means. It is well understood that odometry is not sufficient because it leads to
unbounded position error [15]. A qualitative solution by tracking which side of
landmark-defined lines the robot is on is proposed in [22].

If the robot is equipped with vision, then matching 3D models with 2D scene
images is possible [9, 18]. Because of the enormous computational requirements
of using image data, using two-dimensional laser range scans has also been
proposed and demonstrated successfully [5]. The robot ‘Blanche’ assumes that a
metric map of the environment consisting of polygonal obstacles is available, and
it matches noisy range scans against the map frequently to keep the position error
small [6]. At the heart of the method is an iterative least-squares algorithm that
finds the congruence between a range scan and the map provided that the initial
displacement is small. We can thus consider the problem of position estimation in
a known (or partially known) two-dimensional polygonal environment as solved.

Exploration of an unknown world with imperfect range sensing and odometry
information is addressed [19]. Here the self-localization of the robot is still an
important issue. Distinct locations or landmarks detected from sonar data are used
in [21]. Matching local models of line segments obtained from sonar data with
a cumulative global model is adopted in [8, 26]. A review of self-localization
using occupancy grids is given in [28]. The approach of minimizing the self-
localization problem by building a global map that is a collection of related local
maps is followed in [13]. Weiss et al. used a correlation method to match range
scans for keeping track of robot pose. They first correlate the ‘angle histograms’
of two scans to recover the relative orientation. Then the X and Y histograms
are used to compute translation [29].

In the context of the above literature, our work addresses the robot self-
localization problem by using laser range scans, similar to the work in [5].
However, we consider more general cases as (1) an arbitrary two-dimensional
world, not necessarily polygonal; and (2) an unknown environment. We intend
to address the localization problem for both path execution and exploration of
unknown world.

Dynamic modelling has also been addressed [11], where the robot collects
data as it moves, and each data point is incorporated into a world model using
a Kalman filter for self-localization. The dynamic problem is harder than the
static problem we address here, and hence requires more restrictive assumptions
about the world, typically polygonal objects, to become feasible. In our work we
deal with arbitrarily curved objects where the data is collected while the robot
is stationary.

The main issue in our problem is the consistent alignment of two data sets
(range scans in particular). This is quite different from model-based matching
[10]. Although a range scan represents a 2D shape (contour of the visible world),
this shape is only represented by noisy discrete points instead of a high-quality
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model, which makes it very difficult to reliably define or extract features, as
described in [10]. Another complication is due to the presence of occlusion, since
the range scans from two different robot positions will only partially overlap.
This implies that spatial correlation methods which use arc length to reference
shape contours (such as [17]) can not be easily applied to scan-matching. The
registration method based on fitting Spherical Attribute Images [14] also has
difficulty in matching partial views.

Our approach is to start with an approximate alignment of the two scans
(obtained from odometry), and then iteratively improve the alignment by defining
and minimizing some distance between the scans. We present two algorithms.
The first algorithm is based on matching data points with tangent directions
on the two scans. It is formulated as searching a distance function to estimate
the relative rotation between the scans and using an embedded least-squares
procedure to solve for the relative translation. Previous methods which iteratively
match points to curves or surfaces have also been reported [1, 4]. They typically
solve both rotation and translation from a least-squares procedure and use fixed-
point iterations to improve the solution. To ensure convergence, an initial small
rotation and translation must be assumed. Our method differs from previous
methods in that we do not include the nonlinear rotation component in the least-
squares solution and we use a global search procedure rather than fixed-point
iterations to minimize the distance function. Thus we are able to solve for larger
rotational error than the previous methods.

Our second algorithm is based on iterative least-squares solutions using point
to point correspondences, similar to the ICP algorithm proposed in [1]. But in
addition to choosing the closest point on the model as the correspondence for a
data point, we also choose the model point which has the same distance from
the origin as the data point. Using two correspondence sets allows our method to
estimate the rotation and translation very accurately and our method converges
significantly faster than the ICP algorithm.

The rest of the paper is organized as follows: Section 2 defines the problem
as the alignment of two range scans so as to recover the relative translation and
rotation of the two scans. Section 3 describes the tangent-based matching method.
Section 4 describes the point-based matching method. Section 5 summarizes
the integration of the two algorithms and shows experimental results from both
simulated and real laser range data. Finally, Section 6 concludes the paper.

2. Problem Definition

2.1. POSE ESTIMATION BY ALIGNING SCANS

A range scan is a list of points corresponding to the intersection points of a
laser beam with objects in the robot’s environment. The laser beam rotates in a
horizontal plane and emanates from a sensor mounted on the robot. Thus a range
scan describes a 2D slice of the environment. Points of the range scan can be
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specified in a polar coordinate system whose origin is the location of the sensor,
and the reference axis for the laser beam direction is the home orientation of the
rotating range sensor. Each scan point is represented by the laser beam direction,
and the range measurement along that direction. We refer to (O(x, y), θ0) as the
scan pose, where O is the position of the sensor in a global coordinate system
and θ0 is the sensor home orientation.

Suppose that the robot starts at pose Pref (which is our reference pose) and
takes a scan (call it the reference scan Sref). The robot then moves through a
static environment to a new pose Pnew and takes another scan (call it the new
scan Snew). The approximate difference of pose Pnew from pose Pref (i.e. the
relative translation and rotation) is usually known from odometry information.
However, this information is often imperfect due to wheel slippage. Our task
is to determine the exact difference of pose Pnew with respect to pose Pref , by
aligning the two scans.

The matching problem is formulated as follows: Initially assuming that the
pose of Snew is P ′new, find a rotation ω and a translation T for Snew such that,
after the transformation, Snew is aligned with Sref .

2.2. CRITERION FOR MATCHING SCANS

A scan is a sequence of points which represent the contour curve of the local
environment. Due to the existence of random sensing noise and self-occlusion,
it may be impossible to align two scans perfectly. There exist two types of
discrepancies between the scans.

In the first type, there are small deviations of scan points from the true contour
due to random sensing noise. These deviations can be characterized by an error
distribution function which depends on the sensor. Another type of discrepancy
is the gross difference between the scans caused by occlusion (i.e. some area is
only visible in one scan but not in the other). We regard this kind of discrepancy
as an outlier which cannot be described by the sensing error distribution.

Naturally, we adopt a scan matching criterion as to find the best alignment of
the overlapping part in the sense of minimum least-squares error, while ignoring
the outlier parts. We can formulate this matching criterion as the minimization
of a distance measure between the two scans, as a function of the rotation and
translation. To exclude outliers in defining the distance measure, we can apply
the concept of robust statistics [12, 2].

3. Rotation Search/Least-Squares Matching Algorithm

3.1. METHOD OVERVIEW

Our approach to the scan matching problem is to define a distance measure
between the two scans and search for an appropriate rigid transformation which
minimizes the distance. Although the search space is essentially a three-dimen-
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sional one (rotation and two-dimensional translation), we try to reduce the search
problem to an efficient one-dimensional search plus an embedded least-squares
solution, by carefully formulating the distance measure.

The idea of the tangent-based matching method is briefly described below.
First, we compute the tangent directions on the scans by fitting lines to sets
of consecutive scan points. Then we associate approximate correspondences of
scan points, assuming a known rotation angle ω (but not the translation T ).
From each pair of corresponding points, we formulate a linear equation about
the unknown translation T . Then, by using all correspondence pairs, we define
a least-squares model for T which also represents a matching distance as a
function of ω. Outliers are detected using gates and they contribute a constant
cost to the distance measure (as detailed in Section 3.5). The final step is to
search for a rotation ω which minimizes this distance function. The translation T
is solved through the least-squares method. We refer to this method as rotation
search/least-squares method to distinguish it from pure least-squares based fixed-
point iteration type of methods.

The steps of the algorithm are summarized as the following:

1. Project the reference scan Sref to the pose P ′new so that the two scans are
represented in the same coordinate system. Discard those points on Sref which
are likely not to be visible from the new pose (Section 3.2).

2. Compute the tangent directions on each scan by fitting lines to a neighborhood
of sample points. Discard unreliable tangent lines, such as at corners or depth
discontinuities (Section 3.3).

3. Decide on a trial value of the rotation ω from a global search procedure
(Section 3.6).

4. For each point on Snew, use the rotation angle ω to define an approximate
corresponding point on Sref and compute the point through interpolation.
Check the correspondence against predefined thresholds in order to reject
outliers (Section 3.5).

5. Use all the correspondence pairs to construct a least-squares model for T
and find the least-squares solution. Define a matching distance as a function
of ω from the least-squares residual and the outlier penalties (Section 3.6).

6. Update the rigid transformation by the least-squares solution of T (Sec-
tion 3.6).

7. Repeat steps 3–6 and find the rotation ω which minimizes the matching
distance function. Also obtain the overall translation by integrating the indi-
vidual updates.

3.2. PROJECTION OF REFERENCE SCAN

The reference scan Sref is originally defined at pose Pref . We would like to project
it to the (approximate) new pose P ′new to emulate the world as viewed from P ′new.
This is easily done by a change of coordinate systems for the points in Sref .
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Figure 1. Scan points are considered invisible after projection if (a) their angles are in the
wrong order or (b) there are other points blocking the rays.

After projection, we determine whether each point in Sref is visible from P ′new
based on the bounded obstacle assumption and opaque assumption. (1) Assume
that initially the points in Sref are ordered by their polar angles (say counter-
clockwise). After projecting the points to the new pose, if the new polar angles
of some points are in the wrong order (i.e. become clockwise), then the surface
containing these points is facing away from the sensor and thus the points are
not visible. (2) Along the rays from the new origin P ′new to the points, if there
are other points (either from Sref itself or from the new scan Snew) close enough
to the rays, then the points further from the origin are considered hidden (see
Figure 1 for illustration). The points determined as nonvisible are discarded.

Finally, we obtain a set of points in Sref which are ordered by angles. The
projected scan can be readily used as a reference for registering Snew.

3.3. FITTING TANGENT LINES

At each sample point on a scan, we compute an approximated tangent line by
fitting to a neighborhood of sample points centered at that point. Although we
fit a line at every sample point, some of the lines should not be considered
as tangent lines if the world contour itself is not smooth enough near these
points. Specifically, we want to exclude sample points near corners or occlusion
boundaries.

Two indicators can help us to recognize these non-smooth regions. First,
we check the incidence angle between the ray from the robot to the point and
the normal to the fitted line. A high incidence angle indicates that either the
sensing direction is nearly parallel to a surface so that the range measurements are
sparse and often unreliable, or there is a depth discontinuity (occlusion boundary).
Second, we check the fitting error, which is a measure of the co-linearity of the
points or the smoothness of the local region. Only when both values are within
predefined limits, we consider the fitted line as the tangent line at the current
sample point. Otherwise, we regard the tangent line to be undefined.
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It is interesting to note that the points we discard for being unreliable in
defining tangent (which are likely corners and occlusion boundaries) can be
considered as features. It is possible to do feature-based matching using these
points, provided that the correspondences between the features on the two scans
can be determined. As the number of identifiable features in the scan is far
less than the number of available data points, we believe that the feature-based
solution is less accurate and less robust than our method which uses all the data
points where a tangent is defined.

3.4. CORRESPONDENCE DEFINITION

We define the correspondence of scan points and set up an equation based on
the values of a pair of corresponding points. For the convenience of analysis, we
initially regard the scans as continuous curves rather than sets of discrete points
and we also ignore sensing noise or occlusion, until we instantiate the equation
for the actual scan points.

Once we have projected Sref to the pose P ′new, we represent the two scans in
the same coordinate system (defined by (T0, θ0)). The two scans differ only by
a rotation ω and a translation T = (Tx, Ty)

t.
Let P1 be a sample point on Snew and let P2 be the true corresponding point

on Sref (i.e. they both represent the same physical point in the world). The two
points are related by

P2 = RωP1 + T, (1)

where

Rω =

(
cosω − sinω
sinω cosω

)
is the rotation matrix. Consider the tangent line defined on Snew at P1 and another
tangent line on Sref at P2. Let the normal directions of the two tangent lines be
n1 and n2, respectively. Then we can derive from (1) that

n2 = Rωn1 (2)

n2 · P2 = (Rωn1) · (RωP1) + (Rωn1) · T. (3)

Our strategy is to use (3) to estimate the translation T , given the rotation ω
and the two scans. However, we note that for a point P1 on Snew, the exact
correspondence point P2 on Sref also depends on T . Therefore, we want to derive
an approximated version of (3) which does not use the exact correspondence
point P2.

We will choose a point P ∗ on Sref which is close to P2. There are many choices
of selecting P ∗ based on RωP1 (which is P1 after correcting the rotation), such
as the closest point from RωP1 or the intersection of the normal line at RωP1
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Figure 2. Illustration of point relationships.

with Sref . For the convenience of searching, we choose P ∗ as the intersection of
the extension of vector RωP1 with scan Sref (see Figure 2 for illustration). Let n∗

be the normal direction of the tangent line at P ∗ on Sref. If scan Sref is smooth
and if P ∗ is not too far away from P2, we have the approximate relationships:

(Rωn1) · T ≈ (Rωn1) · (P ∗ −RωP1), (4)

n∗ · T ≈ n∗ · (P ∗ −RωP1). (5)

The approximation errors of the above relationships are of the order O(x2) where
x is related to |T |/|P1| (see Appendix 7 for derivation). Therefore, if |T | � |P1|
and if the contour curve is smooth, the approximation error is small. We can
combine the above two relationships to form a more accurate approximation
whose error is of the order O(x3) (see Appendix 7):

(Rωn1 + n∗) · T ≈ (Rωn1 + n∗) · (P ∗ −RωP1). (6)

Equation (6) is a linear equation about T in the form:

CxTx + CyTy ≈ D. (7)

It is established based on the point P1 and the rotation angle ω. Notice that, given
P1 and ω, we can determine P ∗ without using T . The coefficients Cx, Cy, D
can be computed from ω and the parameters of the tangent lines.

Now if we instantiate (6) for np points on Snew, we can define an error
function:

E(ω, T ) =

np∑
i=1

(Cxi Tx + Cyi Ty −Di)
2. (8)
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This error indicates the “distance” between the two scans as a function of ω
and T . For a given ω, we can solve for T which minimizes the above distance,
in terms of ω. Moreover, the least-squares error minT E(ω, T ) can be considered
as a matching distance function which is primarily defined by the rotation ω. Our
final solution is based on searching the function for an optimal ω such that the
least-squares error is minimum.

3.5. CORRESPONDENCE SEARCH AND OUTLIER DETECTION

Considering the fact that Sref is a discrete set of points, we can obtain the
approximate correspondence point P ∗ for P1 by interpolation. Let the polar angle
of P1 be θ, then the point P ∗ is at direction θ + ω. Note that the points in Sref

are ordered by their polar angles. We can locate two consecutive points on Sref

whose angles enclose θ+ω. Then we linearly interpolate for both the range and
the normal direction of P ∗ across the two points. This correspondence search
is very efficient. We can implement the search for all correspondence pairs in
linear time with respect to the number of points in the two scans.

Correspondence points which differ greatly in their normal directions or posi-
tions are considered as outliers and they are not included in the least-squares
solution. Typical causes of outliers are occlusion or poor tangent estimation. We
empirically choose thresholds α and Hd. A correspondence pair is accepted only
if both of the following conditions are met:

(Rωn1) · n∗ > cosα; |Di| 6 Hd. (9)

Otherwise, we consider the pair as outlier and discard it. We also exclude the
points if they are near a corner or a depth discontinuity (as detected by the line
fitting procedure).

3.6. OPTIMIZATION

We define a total matching distance for a given rotation ω based on the least-
squares error (8) and the number of outliers. Let np be the number of matching
pairs of points and no be the number of outliers, the total matching distance is
defined as:

Ematch(ω) =
1

np + no

(
min
T
E(ω, T ) + noH

2
d

)
, (10)

where H2
d is the constant cost of an outlier (note that Hd is the threshold that

detects outliers). The effect of the thresholding and adding fixed cost for out-
liers to the least-squares error is approximately equivalent to using a truncated
quadratic robust estimator to define the distance measure. The advantage of using
a robust estimator is that a small number of arbitrarily bad outliers do not lead
to an arbitrarily bad estimation [12, 2].
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Figure 3. Matching distance measure as a function of rotation angle, in an example. The
solid curve is the distance function when translation is zero. The dashed curve is the distance
function when translation is (0.2, 0.1) meters (comparing with dimension of the environment
of 10 meters).

The matching distance in (10) is a function of ω. Implicitly, it is also a function
of the translation T (because the least-squares solution T may be different from
the true translation). But the variable ω is dominant. We expect that the distance
function should have a global minimum at the true rotation angle and that the
function is unimodal near the minimum. From the plot of a typical Ematch(ω)
(Figure 3), we can see that the distance function has a single prominent valley.
Furthermore, if there is little translation, it has a well-defined lowest point.

An optimization procedure needs to be applied to minimize a distance func-
tion. Because the distance function is generally not a smooth one, gradient based
search methods are not applicable. One possible way of searching for a minimum
is to sample the search space. Stochastic methods (such as simulated annealing)
may also be applied to minimize the non-smooth distance function (such as [3]).
These methods are usually computationally expensive.

We use the search by golden section method [16] to find the minimum along
the rotation dimension in the distance function. Due to the residue in the trans-
lation, the optimal rotation found by the one-dimensional search may be biased.
To address this problem and reduce the bias, we correct the translation by the
least-squares solution every time we evaluate the distance function. As the search
narrows down the rotation, the translation residue is also getting smaller and so
is the bias.

From the plot, we can see that the valley of the curve is within an interval of
about 0.5 radians (30 degrees) in width. Beyond this interval, the curve is mostly
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flat. We require this initial interval to start the search procedure. However, in case
the initial rotation error is very large or completely unknown, we can determine
an initial interval by coarsely sampling the matching distance with respect to ω.

The amount of translational error handled by our method depends on the
threshold Hd. The algorithm is typically good enough to handle the residuals of
the odometry estimates.

4. Iterative Point Correspondence Matching Algorithm

4.1. GENERAL APPROACH

We now present another method to align two range scans. It is an iterative
algorithm and is based on point to point correspondence. The idea of the method
is the following. For each point Pi on Snew, we use a simple rule (independent of
the actual rotation and translation) to determine a corresponding point P ′i on Sref .
Then from all the correspondence pairs of points, we compute a least-squares
solution of the relative rotation and translation. This solution is applied to reduce
the pose error between the two scans. We repeat this process until it converges.

The least-squares solution is derived by minimizing the following distance
function which is defined on n pairs of correspondence points:

Edist(ω, T ) =
n∑
i=1

|RωPi + T − P ′i |
2. (11)

Closed-form solutions for ω and T can be derived.
The central issue of the algorithm is then to define a sensible rule to determine

correspondences without knowing the actual rotation and translation.

4.2. RULES FOR CORRESPONDENCE

We describe the correspondence rules in the following sections. For convenience,
we will regard the reference scan Sref as a continuous curve and refer to it as
the model. We will consider the correspondence search on a discrete scan later.

4.2.1. Closest-Point Rule

A commonly used rule is to choose the closest point on the model as the cor-
respondence for a data point. We refer to this rule as the closest-point rule.
Figure 4(a) shows an example of finding the correspondences for a set of points
in an elliptic model, using the closest-point rule. Besl and McKay described
a general-purpose iterative closest point (ICP) algorithm for shape registration
based on this rule and they proved that the ICP algorithm always converges
monotonically to a local minimum with respect to the least-squares distance
function [1]. We observe from experiments that, if the rotation is small, the ICP
algorithm is good at solving the translation.
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Figure 4. Use rules to determine correspondences (which are joined by line segments in
the figure). (a) Use the closest-point rule; (b) use the matching-range-point rule. The model
is the ellipse. The data points are labeled by small circles. The big circle in the center is the
origin.

One disadvantage of the ICP algorithm is that it converges very slowly. Espe-
cially, when the model is curved, the correspondences found by the closest-point
rule may contain little information about the rotation. As seen from Figure 4(a),
the vectors joining the correspondence pairs have very inconsistent directions
and they tend to cancel out each other when used together to solve for the rota-
tion. Moreover, regardless of the type of the model, the convergence speed of
the algorithm is always very slow when the distance function approachs a local
minimum.

To accelerate the ICP algorithm, Besl and McKay used a line search method
to heuristically determine the transformation variables based on their values in
two or three recent iterations. Although this improves the convergence speed
near a local minimum, the problem of obtaining a poor solution for the rota-
tion component still exists. Therefore, the improvement in convergence speed is
limited. Moreover, in order to apply the line search method, an implicit assump-
tion is made about the smoothness of the least-square distance function. But this
is typically not true if the number of correspondence pairs changes during the
iterations (as a result of rejecting outliers).

4.2.2. Matching-Range-Point Rule

We propose a different rule which finds the correspondences in such a way that
they significantly reveal the rotation component.

Consider a data point P and its corresponding point P ′ = RωP + T . If we
ignore the translation, we have |P ′| ≈ |P |. On the other hand, the polar angle θ
of P and the polar angle θ̂ of P ′ are related by θ̂ ≈ θ+ω. This implies that the
correspondence of P under a rotation is a point which has the same polar range as
that of P , and the polar angles of the corresponding points differ by the rotation
angle ω. Now in the presence of a small translation, we can still expect that the
point P ′ with the same range as that of P is possibly a good approximation to
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Figure 5. Matching-range-point rule: For a point P , the corresponding point P ′ on the scan
lies within the sector and |OP ′| is closest to |OP |.

the true correspondence of P , and this approximate correspondence provides rich
information about the rotation angle ω.

To ensure that the rule finds a unique and reliable correspondence, we only
search for the matching-range point within a local region of the model near P .
Suppose that we can estimate a bound Bω for the rotation ω, i.e. |ω| 6 Bω. We
have: θ̂ ∈ [θ−Bω, θ+Bω]. This means that P ′ should lie within the sector bound-
ed by θ ± Bω. Therefore, we propose the matching-range-point rule as the fol-
lowing: For a data point P , its corresponding point is P ′ on the model where P ′

satisfies |θ̂−θ| 6 Bω and |P ′| is closest to |P |. The rule is illustrated in Figure 5.
Figure 4(b) shows an example of using the matching-range-point rule to find

correspondences in the elliptic model. We can clearly see that the vectors joining
the correspondence pairs consistently indicate the rotation direction. Therefore,
the least-squares solution should be a good approximation to the true transfor-
mation, especially in the rotation component.

Based on this new rule, we design an iterative matching-range-point (IMRP)
algorithm. In this algorithm, the parameter Bω controls the size of the neigh-
borhood to be searched for a correspondence and also the maximum rotation
possibly solved in one iteration. Thus it will be best to choose Bω to be close
to the rotation residual at every iteration. We empirically generate Bω using an
exponentially decreasing function of the form: Bω(t) = Bω(0) e−αt. It is also
possible to use the least-squares solution of ω in the current iteration to determine
the value of Bω for the next iteration.

A comparison of the performance of the ICP algorithm and the IMRP algo-
rithm is illustrated in Figure 6. We notice that the IMRP algorithm converges
faster than the ICP algorithm in estimating the rotation. For the translation part,
the IMRP algorithm is initially slower but it eventually converges faster than the
ICP algorithm.

The reason that the translation residuals from the IMRP algorithm are initially
reduced slowly is that the matching-range-point rule only tends to influence the
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translation component when the sector width Bω becomes small enough. In the
early iteration when Bω is large, the algorithm tends to explain the displacement
between the correspondence pairs by rotation rather than translation. This phe-
nomenon may present a potential problem to the stability of the algorithm if we
need to dynamically reject outliers using a threshold, as good correspondences
may be falsely rejected as outliers due to the incorrect translation. We will study
more about outlier detection later.

4.2.3. Combining the Two Rules

It is desirable to combine the two rules in order to achieve both the convergence
speed of the matching-range-point rule and the stability of the closest-point rule.
We propose an iterative dual correspondence (IDC) algorithm which uses both
rules, as the following:

1. In each iteration do the following steps:
2. For each data point Pi,

(a) apply the closest-point rule to determine a correspondence point P ′i for
Pi.

(b) apply the matching-range-point rule to determine a correspondence point
P ′′i for Pi.

3. Compute the least-squares solution (ω1, T1) from the set of correspondence
pairs (Pi, P

′
i ), i = 1, . . . , n (which are obtained using the closest-point rule).

4. Compute the least-squares solution (ω2, T2) from the set of correspondence
pairs (Pi, P

′′
i ), i = 1, . . . , n (which are obtained using the matching-range

point rule).
5. Form (ω2, T1) as the solution for the transformation in the current iteration.

The basic idea of the above algorithm is to take the translation component from
the closest-point rule solution and the rotation component from the matching-
range-point rule solution to form the current solution for the transformation.

The combination of the two rules appears to achieve significantly better results
than each of the individual rules. It does not only ensure the stability of the
iterations, but also increases the convergence speed significantly. In fact, the two
rules reinforce each other by reducing different components of the transformation,
so that each of them can be more effective in the following iteration. We notice
that the IDC algorithm is insensitive to the choices of parameter Bω.

Figure 6 illustrates the residuals of the transformation components during the
iterations of the three algorithms. The model and the data points in this example
are the ones given in Figure 4, where the initial rotation is −6 degrees; the initial
translation is (−5, 5) units (the width of the elliptic model is 1000 units). Clearly,
the IDC algorithm reduces the residuals much more quickly than the other two
single-rule algorithms.
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Figure 6. Comparison of iterative algorithms. (a) Rotation residuals from the three algo-
rithms over 30 iterations (note the curve for the IDC algorithm is barely visible as it is
almost zero after three iterations). The initial rotation angle is 6 degrees. (b) Magnitudes of
translation residuals. The magnitude of initial translation is 7.07 units. The model and data
set are given in Figure 6.

We experimentally estimate the rate of convergence for each of the three
algorithms using the above example. The iterative closest point algorithm appears
to have a sublinear convergence rate. The ratio of error residuals (C = ei+1/ei)
gets larger and larger and it approaches to 1. In fact, after 30 iterations, C is
at 0.998. For both the iterative matching-range point algorithm and the iterative
dual correspondence algorithm, the rate of convergence seems to be linear. The
error ratio for the iterative matching-range point algorithm is C = 0.875; the
error ratio for the iterative dual correspondence algorithm is C = 0.685.

4.3. CORRESPONDENCE SEARCH AND OUTLIER DETECTION

We will use the IDC algorithm to register a new scan Snew to the reference scan
(model) Sref . Considering that Sref is discrete, we need to interpolate in order to
locate the correspondence point for each of the two rules.

First, we consider the matching-range-point rule. Let P (r, θ) be a point on
Snew. We want to find another point P ′(r̂, θ̂) on Sref according to the matching-
range rule. Since the points in scan Sref are parameterized in a polar coordinate
system, we choose to linearly interpolate 1/r from θ between two points.

Let P1(θ1, r1), P2(θ2, r2) be two adjacent points, the interpolation function
r̂(θ̂) is:

r̂ = 1
/(

1
r1

+
θ̂ − θ1

θ2 − θ1

(
1
r2
−

1
r1

))
=

r1r2(θ2 − θ1)

r1(θ̂ − θ1) + r2(θ2 − θ̂)
. (12)
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This interpolation scheme is approximately equivalent to connecting the two
points with a line segment if |θ2 − θ1| is small. This can be seen by comparing
(12) with the equation of a straight line passing through P1 and P2:

r̂ =
r1r2 sin(θ2 − θ1)

r1 sin(θ̂ − θ1) + r2 sin(θ2 − θ̂)
. (13)

The interpolation in (12) also has the advantage that the interpolated r̂ is a
monotonic function of θ̂; it is easy to inversely compute θ̂ for a given r̂.

The region where we need to search for P ′ consists of pairs of points whose
angular intervals overlap with [θ−Bω, θ+Bω]. Let [θ1, θ2] be one such interval.
We find the intersection [θ̂1, θ̂2] = [θ1, θ2]∩ [θ−Bω, θ+Bω]. Then we use (12) to
interpolate two points P ′1(θ̂1, r̂1) and P ′2(θ̂2, r̂2) at the ends of the new interval.
If r̂1 6 r and r̂2 6 r, or r̂1 > r and r̂2 > r, one of P ′1 and P ′2 (whose polar range
is closer to r) is a candidate for P ′. In this case, we still need to check other
intervals for a potentially better candidate. But if r̂1 6 r 6 r̂2, or r̂1 > r > r̂2,
we can (inversely) interpolate for a P ′ which has the same range as P .

Now we consider the closest-point rule. For consistency with the matching-
range rule, we slightly modify the closest-point rule such that it chooses the
closest point P ′ within the sector [θ − Bω, θ + Bω] only as the correspondence
of P . The interpolation here is simply connecting two adjacent points with a line
segment. In a similar way as in the search for a matching-range correspondence,
we search all the angular intervals and find a P ′ by checking the distance from
P to the line segments (or end-points).

The search required to determine all the correspondence pairs can be effi-
ciently implemented in linear time with respect to the number of points on the
two scans, by considering the fact that all the points in the scans are ordered by
their angles.

Due to occlusion, we may not find appropriate correspondence points for some
data points. We need to identify these outliers and exclude them from the least-
squares distance function. Assume that we have a bound Br for the maximum
displacement resulting from translation for a pair of corresponding points P and
P ′, i.e. ||P ′| − |P || 6 Br. We use this condition to test for outliers. For a pair
of points found by one of the rules, we accept them as a correspondence pair
only if the above condition is met. The threshold Br can be selected as the kth
largest distance among all the correspondence pairs, according to a predetermined
constant fraction (p-tile).

4.4. CONVERGENCE OF ITERATIVE ALGORITHM

The iterative algorithm terminates when the change in the least-squares errors in
sufficiently small. In practice, we find it sufficient to fix the number of iterations
to about 15–20.
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The iterative process in the algorithm resembles fixed-point iterations. Since
the zero pose error is a stable fixed-point for the process, we expect that once
the iteration converges that the final solution should be very accurate. To ensure
convergence a good initial estimate (small initial pose error) is required by the
algorithm. Usually, we can use odometry to provide this initial estimate. Anoth-
er possibility is to first apply the rotation search/least-squares method which we
presented in Section 3 to obtain a relatively good registration before applying the
point-based method. We find from experiments that this strategy usually guaran-
tees the convergence of the point-based method and the point-based method also
usually improves the accuracy of the solution.

5. Scan Matching Experiments

5.1. COMBINING THE TWO ALGORITHMS

We have presented two algorithms, the rotation search/least-squares algorithm
and the iterative point correspondence algorithm, for matching range scans. The
rotation search/least-squares uses a search procedure in the optimization process.
This allows the algorithm to robustly solve for the transformation even in the
presence of a large initial pose error. However, because the matching distance
function is not smooth and we only use a simple one-dimensional search pro-
cedure to do the minimization, the solution given by this algorithm may not be
highly accurate. On the other hand, the iterative point correspondence algorithm
gives a more accurate solution through its fix-point iterations, as long as it con-
verges. This natually leads to a two-staged algorithm to solve a general matching
problem by sequentially combining the two algorithms. We apply this algorithm
in the following experiments.

5.2. SENSING STRATEGY

If we have control over the sensing directions (as is the case with the ARK sensor
[27]), we can choose to take a range scan in such a way that the sampling points
are evenly distributed in space. In other words, we want the distances between
adjacent points to be approximately equal. This is more efficient than a uniform
sampling of orientation where the interval width is proportional to the ranges of
the points from the sensor.

Assume that the current sample point is P (θ, r). We will decide the direction
of the next shot, θ + ∆θ, such that the new point is a fixed distance d away
from P . If we approximate the contour curve near P by its tangent line (which
has parameter (ρ, φ)), the increment in sensing direction is:

∆θ = arctan
d cos(θ − φ)

r + d sin(θ − φ)
, (14)
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where the angle θ − φ can be computed by the following:

θ − φ = arctan
(

1
r

dr
dθ

)
. (15)

Note that the derivative dr/dθ can be estimated from recent range measurements.
Combine the above two equations and take a first order approximation (for a small
d), we get:

∆θ ≈
d√

r2 + (dr/dθ)2
. (16)

To avoid infinitely small increments, we can predefine a minimum value for ∆θ.
Now θ + ∆θ is the direction to take the next measurement.

This sensing strategy is used to generate both simulated and real scan data in
our experiments.

5.3. EXPERIMENTS WITH SIMULATED DATA

Range measurements are simulated for various environments in order to test the
matching algorithms. We model the environments with lines and spline curves.
Sensing noises are modeled as additive random variables. For a given environ-
ment model, we can simulate a range scan from any robot pose.

We present a series of experiments using simulated range data. In each experi-
ment, we choose an environment model and two poses, Pref and Pnew, from which
to take the scans Sref and Snew. The pose error is generated randomly where ω is
uniformly distributed in [−0.25, 0.25] radians (±14.3◦) and T is uniformly dis-
tributed in a disk of radius 50 centimeters (comparing with the dimension of the
environment of 10 meters). Sensing noise is assumed to be uniformly distributed.
We vary the maximum sensing noise in each experiment.

In each experiment setting, the matching process was run 1000 times (with
randomly generated initial pose error and sensing noise as described above).
We computed the standard deviations (from the theoretical zero means) of the
residuals of the variables (ω, Tx, and Ty) resulting from each matching process.
The standard deviations of the residuals after the first stage (rotation search
algorithm) and after the second stage (iterative point correspondence algorithm)
were recorded. In the matching process, the number of iterations was fixed at 15
in each of the two stages.

The results from six experiments are listed in Table I. In each experiment,
we list the environment model, the maximum sensing noise, and the standard
deviations of the residuals.

We have some observations from the statistical results. (1) The pose error
residuals are very small compared with the sensing noise. The standard deviation
of translation residuals is about 15% to 25% of the standard deviation of sensing
noise. The rotation residuals are well within one degree. With a typical sensor
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Table I. Statistics of experiments in simulated environments. Maximum
initial rotation and translation are set at ±14.3◦ and 50 cm, respectively

Table II. Standard deviations of the residuals from the two
algorithms when they are run independently with the same set
of input. Maximum sensing noise is ±10 cm. Maximum initial
rotation and translation are ±5.7◦ and 20 cm, respectively

Residual First algorithm Second algorithm

Rotation σω 0.5375◦ 0.1599◦

Translation x σx 0.7652 cm 0.7827 cm
Translation y σy 0.7998 cm 0.6514 cm
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Figure 7. Example (from experiment 4, maximum sensing noise is 10 cm). The robot went
from pose A to pose B in reality, but due to odometry errors, it thinks it went to pose
B′. Points on scans from pose A and B are labeled as x’s and small circles respectively.
The poses are indicated by arrows. Part (a) shows the alignment error due to the difference
between pose B′ and true pose B. Part (b) shows the result of aligning the two scans. The
pose B′ is corrected to the true pose B by the same transformation. Part (a) shows the pose
error (indicated by the difference from B′ to B) and the resulted alignment error of the
scans. Part (b) shows the result of correcting the pose error and aligning the two scans. The
large rotation and translation are corrected successfully. There is occlusion in the scan.

accuracy of 5 cm, the rotation residuals are within one tenth of a degree. (2) The
algorithm behaved robustly over thousands of runs. (3) The second algorithm
(iterative point correspondence algorithm) gave significantly more accurate esti-
mates of rotation than the first algorithm. But the two methods are equally good in
finding the translations (the second algorithm is slightly better when the sensing
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Figure 8. Example of matching scans taken by the ARK robot at U of T.

noise is relatively small or when the environment is mostly linear (experiments
1, 2, 3). (4) The residuals appear to be normally distributed with approximately
zero means. (5) When the sensing noise becomes large (experiments 5 and 6), the
algorithm degrades gracefully. In experiment 6 (where the sensing noise is set to
20 cm), it appears that the limit of the algorithm is reached. We experienced a few
failure cases where the iterative algorithm did not converge. There were about 10
such cases among the 1000 runs. The failure is partly caused by the step of reject-
ing outliers using thresholds. Raising the threshold level may improve conver-
gence. But it may result in bias in the estimation because of outliers. High sensing
noise also leads to bad estimation of local contour directions. Thus the correspon-
dence association step (which involves interpolation) is subject to large error.

In Figure 7 we show a typical matching example, from experiment 4, in
which the environment consists of mostly curves (rotation 0.5 radians (28.6◦),
translation (−60, 40) centimeters). There also exist occlusions in the scans.
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Figure 9. Example of matching real scans at FAW, Ulm, Germany. The scans are shown
in dots. Part (a) shows the pose error (indicated by the difference from B′ to B) and the
resulted alignment error of the scans. Part (b) shows the result of correcting the pose error
and aligning the two scans.

In the above experiments, the second algorithm (point correspondence based
method) is not fairly tested as its input (from the output of the first algorithm)
is too good. Here we present another experiment which examines the iterative
point correspondence algorithm without first applying the rotation search method.
We use the same environment as the one in experiment 2, but set the maximum
sensing noise to ±10 cm. The initial pose error is randomly generated so that ω
is uniformly distributed over [−0.1, 0.1] radians and T is uniformly distributed in
a disk of radius 20 centimeters. We ran this experiment 1000 times. The standard
deviations of the residuals are listed in Table II. For comparison, we also ran the
rotation search/least squares algorithm using the same input set. We can see that
the second algorithm is still successful despite the relatively larger initial pose
errors. Again, the second algorithm performs significantly better than the first
one in finding the rotation, but only slightly better in finding the translation.
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Figure 10. Example using real data from a hallway. Notice that the constraints are weak
along the hallway direction. Alignment still can be made using our algorithm.

5.4. EXPERIMENTS WITH REAL DATA

In this section, we present the experimental results using real range sensor data in
two different environments. In the first experiment, we used the ARK robot [27]
to collect range scans in the Vision Lab at the Department of Computer Science,
University of Toronto. The ARK robot is equipped with a laser rangefinder
(model Optech G150) mounted on a pan and tilt unit on the robot platform. The
accuracy of the rangefinder is 4 centimeters. Figure 8 shows a typical example
from the ARK environment. Relatively large pose errors between the two scans
were intentionally introduced. Unfortunately, the ground truth for this experiment
is not available as the robot was driven by hand. Notice that in performing the
matching the algorithm is able to ignore the cluttered areas at the right-side wall
and the bottom left corner (which are bookshelves).

Another testing environment is the cafeteria and nearby corridor in FAW,
Ulm, Germany. The laser rangefinder used was a Ladar 2D IBEO Lasertechnik
mounted on the AMOS robot. The laser sensor has a maximum viewing angle
of 220 degrees, and an accuracy of ±20 mm. We obtained 30 scans which were
taken by the robot along its path at a pace of approximately 2 meters between
scan poses. We then selected 84 pairs of scans which have sufficient overlap and
applied the scan matching algorithm to each pair. All of these scan matching
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results were used by a global scan registration algorithm which is discussed
in [24, 23]. A typical example in the FAW environment is shown in Figure 9.
As previously, we exaggerated the pose errors for testing the algorithm. The
odometry error from the actual robot is much smaller. Note that this robot samples
orientation uniformly when taking the scans, as opposed to our early strategy on
the ARK robot of making the sample points uniformly dense. We also include
another example using real range data from an FAW hallway (Figure 10). Notice
that the constraints along the hallway direction are weak (the only reference are
several shallow doorways).

6. Conclusion

We have developed two methods for matching two range scans and correcting the
relative pose error. The two methods can either be used individually or applied
in sequence. Our matching methods have the following desirable properties:

1. Both methods can handle sensor noise and partial occlusion. By checking
against thresholds, the methods can effectively reject possible outliers. The
methods are not very sensitive to the choice of threshold values.

2. The methods do not rely on distinguishable features in the environment. Thus
we avoid the difficult process of feature detection and feature correspondence.
The availability of the number of features should not concern us either. In
fact, we use most of the sensor data in the matching process. This suggests
that our algorithms are robust.

3. We do not require an a priori world model. We can match a scan directly
to another scan. Therefore our method can be used for exploration and map
building in unknown environments.

4. Our method can work in a general curved environment. We do not require
the world contours to be linear, as many other methods do.

5. The algorithm is fast (linear time in the number of sensor data points per
iteration, for a small fixed number of iterations). There is no exponential
searching needed in finding the primitive correspondence.

6. Our algorithm has the ability to correct arbitrarily large errors in rotation.
7. Our algorithms are demonstrated to be superior over similar existing methods

in robustness and efficiency.

We have tested our algorithm thoroughly with simulated data under various
adverse conditions. We also tested the algorithm with real data from two different
environments using different sensors. An open problem is the extension of the
algorithms to the dynamic case, where data is collected as the robot moves.
For this, the correspondence computations must be extended to handle variable
occlusion (which will slow the algorithms down), and good models of the robot’s
motion and the scanning process are required. It is an open question whether
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the benefit of continuous data collection in the dynamic case outweighs the
drawbacks of sparseness of data and the need for additional models.
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Appendix

7. Error from Approximate Point Correspondence

In Section 3.4, we choose an approximate correspondence P ∗ to replace P2 as
the corresponding point for P1 (see Figure 11). The pair P1, P ∗ is used to form
a constraint on the translation vector T as (assuming the rotation is already
corrected out):

n1 · T ≈ n1 · (P
∗ − P1). (17)

The error in the above approximation is derived as the following. We regard that
the reference scan Sref is parameterized with the angle θ as the index parameter.
Let P2 = (x(0), y(0)), P ∗ = (x(θ), y(θ)). Then the approximation error is:

(P ∗ − P1 − T ) · n1

= (P ∗ − P2) · n2

= (x(θ)− x(0), y(θ)− y(0)) · (−y′(0), x′(0))/
√
x′(0)2 + y′(0)2

= (θx′(0) + O(θ2), θy′(0) + O(θ2)) · (−y′(0), x′(0))/
√
x′(0)2 + y′(0)2

= O(θ2).

Notice that θ 6 |T |/|P1|. The above error is bounded by O((|T |/|P1|)2), which
is small when |T | � |P1|.

Similarly, we can show that

n∗ · T ≈ n∗ · (P ∗ − P1) (18)

with an approximation error of O((|T |/|P1|)2).
Furthermore, we can combine (17) and (18) and yield a better approximated

constraint:

(n1 + n∗) · T ≈ (n1 + n∗) · (P ∗ − P1) (19)
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Figure 11. Illustration of approximate point correspondence.

whose approximation error can be similarly derived as

(P ∗ − P2) · (n∗ + n2) = O(θ3) = O((|T |/|P1|)
3).

Note that in the above derivation, we assume that the curve (reference scan)
is smooth.
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