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Abstract
In this work, we explore finite-dimensional linear representations of nonlinear dynamical

systems by restricting the Koopman operator to an invariant subspace spanned by specially

chosen observable functions. The Koopman operator is an infinite-dimensional linear oper-

ator that evolves functions of the state of a dynamical system. Dominant terms in the Koop-

man expansion are typically computed using dynamic mode decomposition (DMD). DMD

uses linear measurements of the state variables, and it has recently been shown that this

may be too restrictive for nonlinear systems. Choosing the right nonlinear observable func-

tions to form an invariant subspace where it is possible to obtain linear reduced-order mod-

els, especially those that are useful for control, is an open challenge. Here, we investigate

the choice of observable functions for Koopman analysis that enable the use of optimal lin-

ear control techniques on nonlinear problems. First, to include a cost on the state of the sys-

tem, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the

observable subspace, as in DMD. However, we find that this is only possible when there is

a single isolated fixed point, as systems with multiple fixed points or more complicated

attractors are not globally topologically conjugate to a finite-dimensional linear system, and

cannot be represented by a finite-dimensional linear Koopman subspace that includes the

state. We then present a data-driven strategy to identify relevant observable functions for

Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynam-

ical system by ℓ1-regularized regression of the data in a nonlinear function space; we also

show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of non-

linear observable subspaces in the design of Koopman operator optimal control laws for

fully nonlinear systems using techniques from linear optimal control.
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Introduction
Koopman spectral analysis provides an operator-theoretic perspective to dynamical systems,
which complements the more standard geometric [1] and probabilistic perspectives. In the
early 1930s [2, 3], B. O. Koopman showed that nonlinear dynamical systems associated with
Hamiltonian flows could be analyzed with an infinite dimensional linear operator on the Hil-
bert space of observable functions. For Hamiltonian fluids, the Koopman operator is unitary,
meaning that the inner product of any two observable functions remains unchanged by the
operator. Unitarity is a familiar concept, as the discrete Fourier transform (DFT) and the
proper orthogonal decomposition (POD) [4] both provide unitary coordinate transformations.
In the original paper [2], Koopman drew connections between the Koopman eigenvalue spec-
trum and conserved quantities, integrability, and ergodicity. Recently, it was shown that level
sets of the Koopman eigenfunctions form invariant partitions of the state-space of a dynamical
system [5]; in particular, eigenfunctions of the Koopman operator may be used to analyze the
ergodic partition [6, 7]. Koopman analysis has also been recently shown to generalize the Hart-
man-Grobman theorem to the entire basin of attraction of a stable or unstable equilibrium
point or periodic orbit [8]. For more information there are a number of excellent in-depth
reviews on Koopman analysis by Mezić et al. [9, 10].

Koopman analysis has been at the focus of recent data-driven efforts to characterize com-
plex systems, since the work of Mezić and Banaszuk [11] and Mezić [12]. There is considerable
interest in obtaining finite-rank approximations to the linear Koopman operator that propa-
gate the original nonlinear dynamics. This is especially promising for the potential control of
nonlinear systems [13]. However, by introducing the Koopman operator, we trade nonlinear
dynamics for infinite-dimensional linear dynamics, introducing new challenges. Finite-dimen-
sional linear approximations of the Koopman operator may be useful to model the dynamics
on an attractor, and those that explicitly advance the state may also be useful for control. Any
set of Koopman eigenfunctions will form a Koopman-invariant subspace, resulting in an exact
finite-dimensional linear model. Unfortunately, many dynamical systems do not admit a
finite-dimensional Koopman-invariant subspace that also spans the state; in fact, this is only
possible for systems with an isolated fixed point. It may be possible to recover the state from
the Koopman eigenfunctions, but determining the eigenfunctions and inverting for the state
may both be challenging.

Dynamic mode decomposition (DMD), introduced in the fluid dynamics community [14–
17], provides a practical numerical framework for Koopman mode decomposition. DMD has
been broadly applied to a wide range of applied domains, including fluid dynamics [10, 18–21],
neuroscience [22], robotics [23], epidemiology [24], and video processing [25–27]. In each of
these domains, DMD has been useful for extracting spatial-temporal coherent structures from
data; these structures, often calledmodes, oscillate at a fixed frequency and/or a growth or
decay rate. By decomposing the state space into these spatial-temporal coherent modes, it is
possible to infer physical mechanisms underlying observed high-dimensional data. Much of
the success of DMD rests on it foundations in linear algebra, as the procedure is easy to imple-
ment [28], the results are highly interpretable, and the method lends itself naturally to exten-
sions [17], such as compressed sensing [27, 29–31], disambiguating the effect of actuation [13],
multi-resolution analysis [32], de-noising [33, 34], and streaming variants [35].

DMD implicitly uses linear observable functions, such as direct velocity field measurements
from particle image velocimetry (PIV). In other words, the observable function is an identity
map on the fluid flow state. This set of linear observables is too limited to describe the rich
dynamics observed in fluids or other nonlinear systems. Recently, DMD has been extended to
include a richer set of nonlinear observable functions, providing the ability to effectively analyze
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nonlinear systems [36]. Because of the extreme cost associated with this extended DMD for high-
dimensional systems, a variation using the kernel trick frommachine learning has been imple-
mented to make the cost of extended DMD equivalent to traditional DMD, but retaining the ben-
efit of nonlinear observables [37]. However, choosing the correct nonlinear observable functions
to use for a given system, and how they will impact the performance of Koopman mode decom-
position and reduction, is still an open problem. Presently, these observable functions are either
determined using information about the right-hand side of the dynamics (i.e., knowing that the
Navier-Stokes equations have quadratic nonlinearities, etc.) or by brute-force trial and error in a
particular basis for Hilbert space (i.e., trying many different polynomial functions).

In this work, we explore the identification of observable functions that span a finite-dimen-
sional subspace of Hilbert space which remains invariant under the Koopman operator (i.e., a
Koopman-invariant subspace spanned by eigenfunctions of the Koopman operator). When
this subspace includes the original states, we obtain a finite-dimensional linear dynamical sys-
tem on this subspace that also advances the original state directly. We utilize a new algorithm,
the sparse identification of nonlinear dynamics (SINDy) [38], to first identify the right-hand
side dynamics of the nonlinear system. Next, we choose observable functions such that these
dynamics are in the span. Finally, for certain dynamical systems with an isolated fixed point,
we construct a finite-dimensional Koopman operator that also advances the state directly. For
the examples presented, this procedure is closely related to the Carleman linearization [39–41],
which has extensions to nonlinear control [42–44]. Afterward, it is possible to develop a non-
linear Koopman operator optimal control (KOOC) law, even for nonlinear fixed points, using
techniques from linear optimal control theory.

Background on Koopman analysis
Consider a continuous-time dynamical system, given by:

d
dt

x ¼ fðxÞ; ð1Þ

where x 2M is an n-dimensional state on a smooth manifoldM. The vector field f is an ele-
ment of the tangent bundle TM ofM, such that f(x)2Tx M. Note that in many cases we dis-
pense with manifolds and chooseM ¼ R

n and f a Lipschitz continuous function.
For a given time t, we may consider the flow map Ft:M!M, which maps the state x(t0) for-

ward time t into the future to x(t0+t), according to:

Ftðxðt0ÞÞ ¼ xðt0 þ tÞ ¼ xðt0Þ þ
Z t0þt

t0

fðxðtÞÞ dt: ð2Þ

In particular, this induces a discrete-time dynamical system:

xkþ1 ¼ FtðxkÞ; ð3Þ

where xk = x(kt). In general, discrete-time dynamical systems aremore general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infi-
nite-dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-
integrable functions onM; other choices of a measure space are valid.

The Koopman operatorKt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg ¼ g � Ft ð4Þ
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where � is the composition operator, so that:

KtgðxkÞ ¼ gðFtðxkÞÞ ¼ gðxkþ1Þ: ð5Þ

In other words, the Koopman operatorKt defines an infinite-dimensional linear dynamical
system that advances the observation of the state gk = g(xk) to the next timestep, as illustrated
in Fig 1:

gðxkþ1Þ ¼ KtgðxkÞ: ð6Þ

Note that this is true for any observable function g and for any point xk 2M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operatorKt is unitary, and forms a one-parameter fam-
ily of unitary transformations in Hilbert space. The Koopman operator is also known as the
composition operator, which is formally the pull-back operator on the space of scalar observ-
able functions [45]. The Koopman operator is the dual, or left-adjoint, of the Perron-Frobenius
operator, or transfer operator, which is the push-forward operator on the space of probability
density functions.

We may also describe the continuous-time version of the Koopman dynamical system in Eq
(6) with the infinitesimal generatorK of the one-parameter family of transformations Kt [45]:

d
dt

g ¼ Kg: ð7Þ

Fig 1. Schematic illustrating the Koopman operator for nonlinear dynamical systems. The dashed lines from yk ! xk indicate that we would like to be
able to recover the original state.

doi:10.1371/journal.pone.0150171.g001
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The linear dynamical systems in Eqs (7) and (6) are analogous to the dynamical systems in Eqs
(1) and (3), respectively. It is important to note that the original state xmay be the observable,
and the infinite-dimensional operatorKt will advance this observable function. Again, for
Hamiltonian systems, the infinitesimal generatorK is self-adjoint.

Koopman invariant subspaces and exact finite-dimensional models
As with any vector space, we may choose a basis for Hilbert space and represent our observable
function g in this basis. For simplicity, let us consider basis observable functions y1(x), y2(x),
etc., and let a given function g(x) be written in these coordinates as:

g ¼
X1
k¼1

akyk: ð8Þ

A Koopman-invariant subspace is given by span{ys1, ys2, � � �, ysm} if all functions g in this subspace,
g ¼ a1ys1 þ a2ys2 þ � � � þ amysm ; ð9Þ

remain in this subspace after being acted on by the Koopman operatorK:

Kg ¼ b1ys1 þ b2ys2 þ � � � þ bmysm : ð10Þ

For functions in these invariant subspaces, it is possible to restrict the Koopman operator to this
subspace, yielding a finite-dimensional linear operatorK.K acts on a vector spaceRm, with the
coordinates given by the values of ysk(x). This induces a finite-dimensional linear system, as in
Eqs (6) and (7). Koopman eigenfunctions φ, such thatKφ ¼ lφ, generate invariant subspaces;
however, it may or may not be possible to invert these functions to recover the original state x.

For control, we may seek Koopman-invariant subspaces that include the original state vari-
ables x1, x2, � � �, xn. The Koopman operator restricted to this subspace is finite-dimensional, lin-
ear, and it advances the original state dynamics, as well as the other observables in the
subspace, as shown in Fig 1. These Koopman-invariant subspaces may be identified using
data-driven methods, as discussed below. In the following sections, we will show that including
the state in our observable subspace is rather restrictive, and it is not possible for the vast
majority of nonlinear systems. In fact, it is impossible to determine a finite-dimensional Koop-
man-invariant subspace that includes the original state variables for any system with multiple
fixed points or any more general attractors. This is because all finite-dimensional linear systems
have a single fixed point, and cannot be topologically conjugate to a system with multiple fixed
points. This does not, however, preclude the identification of Koopman-invariant subspaces
spanned by Koopman eigenfunctions φ, which may provide useful intrinsic coordinates [46].
In fact, it is possible to establish topological conjugacy of the entire basin of attraction of a sta-
ble or unstable fixed point or periodic orbit with an associated linear system through the Koop-
man operator, as shown in [8, 10]. It may be possible to invert these coordinates to recover the
states, although determining eigenfunctions and inverting them to obtain the state may both
be challenging.

For the original state variables x1, x2, � � �, xn to be included in the Koopman-invariant sub-
space, then the nonlinear right hand side function fmust also be in this subspace:

d
dt

x ¼ fðxÞ ¼) d
dt

x1
x2

..

.

xn

2
666664

3
777775 ¼

f1ðx1; x2; � � � ; xnÞ
f2ðx1; x2; � � � ; xnÞ

..

.

fnðx1; x2; � � � ; xnÞ

2
666664

3
777775: ð11Þ
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The state variables x form the first n observable functions ys1 = x1, ys2 = x2, � � �, ysn = xn, and the
remainingm − n observables are nonlinear functions required to represent the terms in f. If it
is possible to represent each term fk as a combination of observable functions in the subspace,

fkðx1; x2; � � � ; xnÞ ¼ ck;1ys1 þ ck;2ys2 þ � � � þ ck;mysm ; ð12Þ

then we may write the first n rows of the Koopman-induced dynamical system as:

d
dt

y1
y2

..

.

yn
ynþ1

..

.

ym

2
666666666666664

3
777777777777775

¼

c1;1 c1;2 � � � c1;n c1;nþ1 � � � c1;m
c2;1 c2;2 � � � c2;n c2;nþ1 � � � c2;m

..

. ..
. . .

. ..
. ..

. . .
. ..

.

cn;1 cn;2 � � � cn;n cn;nþ1 � � � cn;m
? ? � � � ? ? � � � ?

..

. ..
. . .

. ..
. ..

. . .
. ..

.

? ? � � � ? ? � � � ?

2
666666666666664

3
777777777777775

y1
y2

..

.

yn
ynþ1

..

.

ym

2
666666666666664

3
777777777777775

: ð13Þ

In practice, the lastm − n rows may be determined analytically, by successively computing d
dt
yk

for k> n and representing these derivatives in terms of other subspace observables. Knowing
the dynamics f is essential to choose a relevant observable subspace. If the dynamics are
known, observables may be derived analytically. Alternatively, a least-squares regression may
be performed using data, as in the extended DMD [36].

Data-driven sparse identification of nonlinear observable functions
It is clear from Eqs (11)–(13) that the choice of relevant Koopman observable functions is
closely related to the form of the nonlinearity in the dynamics. In the case that governing equa-
tions are unknown, data-driven strategies must be employed to determine useful observable
functions. A recently developed technique allows for the identification of the nonlinear dynam-
ics in Eq (11), purely from measurements of the system [38]. The so-called sparse identification
of nonlinear dynamics (SINDy) algorithm uses sparse regression [47] in a nonlinear function
space to determine the relevant terms in the dynamics. This may be thought of as a generaliza-
tion of earlier methods that employ symbolic regression (i.e., genetic programming [48]) to
identify dynamics [49, 50]; a similar method has been used to predict catastrophes in dynam-
ical systems [51]. Thus, the SINDy algorithm is an equation-free method [52] to identify a
dynamical system from data. This follows a growing trend to exploit sparsity in dynamics [53–
55] and dynamical systems [56–58].

For simplicity in connecting the SINDy algorithm with dynamic mode decomposition
(DMD), we consider discrete-time systems as in Eq (3), although the algorithm applies equally
well to continuous-time systems. In the SINDy algorithm, measurements of the state x of a
dynamical system are collected, and these measurements are augmented into a larger vectorΘ(x)
which contains candidate functions yck(x) for the right-hand side dynamics Ft(x) in Eq (3):

YðxÞ ¼

yc1ðxÞ
yc2ðxÞ

..

.

ycmðxÞ

2
666664

3
777775: ð14Þ

Often, we will choose the first n functions to be the original state variables, yck(x) = xk, so that the
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state x inΘ(x). Then, we write the following matrix system of equations:��� ��� ���
x2 x3 � � � xM��� ��� ���

2
6664

3
7775 ¼

─── ξT1 ───

..

.

─── ξTn ───

2
664

3
775

��� ��� ���
Yðx1Þ Yðx2Þ � � � YðxMÞ��� ��� ���

2
6664

3
7775: ð15Þ

This may be written in matrix short-hand as:

X0 ¼ XTYðXÞ: ð16Þ

The functions inΘ(x) are candidate terms in the right hand side dynamics Ft, and they will

also be candidate observable functions. The row vectors ξTk determine which nonlinear terms
inΘ(x) are active in the k-th row of Ft; typically, ξk will be a sparse vector, since only a few
terms are active in the right hand side of many dynamical systems of interest. In this case, we

may use sparse regression, such as the LASSO [47], to solve for each sparse row ξTk . In this
regression, there is an additional term that penalizes the ℓ1 norm (k�k1) of the regression
parameters so that as many parameters are set to zero as possible. Afterward, the sparse matrix
XT yields a nonlinear discrete-time model for Eq (3), obtained purely from data:

xkþ1 ¼ XTYðxkÞ: ð17Þ

With the active terms in the nonlinear dynamics identified as the nonzero entries in the
rows of XT, it is possible to include these functions in the Koopman subspace. Note that in the
original SINDy algorithm, the transpose of Eq (15) was used so that the rows of X become
sparse column vectors, establishing a closer resemblance to sparse regression and compressed
sensing formulations. Again, either discrete-time or continuous time formulations may be
used. After a reduced observable subspace has been identified, we may re-apply the SINDy
Algorithm:

YrefðX0Þ ¼ XT
augYðXÞ ð18Þ

whereΘref is a refined set of candidate observable functions that are active in Eq (17). The addi-
tional rows of Xaug determine how these observable functions advance as a linear combination
of other observable functions. This procedure may be iterated until the subspace converges.
Also, the ℓ1 sparse regularization may be omitted in these regressions.

Connections to dynamic mode decomposition (DMD). In the case thatΘ(x) = x, the
problem in Eq (16) reduces to the standard DMD problem:

X0 ¼ XX: ð19Þ

In the standard DMD algorithm, a solution X is obtained that minimizes the sum-square error:

X ¼ argmin
~X

k X0 � ~XX kF ; ð20Þ

where k�kF is the Frobenius norm. This is generally obtained by computing the pseudo-inverse
of X using the singular value decomposition (SVD).

Systems with Koopman-invariant subspaces containing the state
Here, we construct a family of nonlinear dynamical systems where it is possible to find a Koop-
man-invariant subspace that also includes the original state variables as observable functions.
These systems necessarily only have a single isolated fixed point, as there is no finite-
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dimensional linear system that can represent multiple fixed points or more general attractors.
It is, however, possible to obtain linear representations of entire basins of attractions of certain
fixed points using eigenfunction coordinates [8, 36], where it may be possible to invert to find
the state. However, these are still not global descriptions, and finding these eigenfunctions and
inverting to recover the state remains an open challenge for most systems. All of the examples
below exhibit polynomial nonlinearities that give rise to polynomial slow or fast manifolds.

Continuous-time formulation
Consider a continuous-time dynamical system with a polynomial slow manifold, given by

d
dt

x1

x2

" #
¼

mx1

lðx2 � Pðx1ÞÞ

" #
; ð21Þ

where P(x) is a polynomial function. If λ� |μ|<0,then the λ dynamics rapidly drive x2 − P(x1)
to zero, so that x2 = P(x1). Once on this manifold, the slower μ dynamics become dominant.
The manifold x2 = P(x1) is referred to as an asymptotically attracting slow manifold. This sys-
tem has a single fixed point at the origin x1 = x2 = 0. We will show that there always exists a
finite-dimensional linear system that is given by the closure of the Koopman operator on an
observable subspace spanned by the states x1, x2 and the active polynomial terms in P(x1).

First, consider a single monomial term given by P(x) = xN. For the dynamics in the right
hand side of Eq (21) to be in the span of our Koopman-invariant subspace, we must include
the observable function xN. Thus, we must augment the state with an observable function xN,
so that:

y ¼
y1
y2
y3

2
64

3
75 ¼

x1
x2
xN1

2
64

3
75: ð22Þ

Now, the first two terms for d
dt
y1 ¼ my1 and

d
dt
y2 ¼ ly2 � ly3 are linearly related to the entries

of y. Finally, to determine d
dt
y3, we need only apply the chain rule:

d
dt

y3 ¼
d
dt

xN1 ¼ NxN�1
1

d
dt

x1 ¼ mNxN1 ¼ mNy3: ð23Þ

This is closely related to Carleman linearization [39–41]. Thus, the system simplifies as:

d
dt

y1
y2
y3

2
64

3
75 ¼

m 0 0

0 l �l

0 0 mN

2
64

3
75

y1
y2
y3

2
64

3
75: ð24Þ

For more general polynomials, given by PðxÞ ¼ a1x
N1 þ a2x

N2 þ � � � þ aMx
NM , we must

include each of the monomial terms with nonzero coefficient, resulting in:

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775

¼

x1
x2
xN1
1

xN2
1

..

.

xNM
1

2
66666666664

3
77777777775

¼) d
dt

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775
¼

m 0 0 0 � � � 0

0 l �a1l �a2l � � � �aMl

0 0 mN1 0 � � � 0

0 0 0 mN2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � mNM

2
66666666664

3
77777777775

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775
:

Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamics for Control

PLOS ONE | DOI:10.1371/journal.pone.0150171 February 26, 2016 8 / 19



This expression is finite-dimensional and linear, and it advances the original state x forward
exactly, even though the governing dynamics are nonlinear.

Continous-time examples. Here, we consider two examples with slow manifolds, which
are illustrated in Fig 2. The first system, with quadratic attracting manifold x2 ¼ x21 , is given by:

_x1 ¼ mx1

_x2 ¼ lðx2 � x21Þ

)
¼) d

dt

y1
y2
y3

2
64

3
75 ¼

m 0 0

0 l �l

0 0 2m

2
64

3
75

y1
y2
y3

2
64

3
75 for

y1
y2
y3

2
64

3
75 ¼

x1
x2
x21

2
64

3
75 ð25Þ

and the second system, with quartic attracting manifold x2 ¼ x41 � 2x21 , is given by:

_x1 ¼ mx1

_x2 ¼ lðx2 � x41 þ 2x21Þ

)
¼) d

dt

y1
y2
y3
y4

2
66664

3
77775 ¼

m 0 0 0

0 l 2l �l

0 0 2m 0

0 0 0 4m

2
66664

3
77775

y1
y2
y3
y4

2
66664

3
77775 for

y1
y2
y3
y4

2
66664

3
77775 ¼

x1
x2
x21
x41

2
66664

3
77775:

To understand the embedding of a nonlinear dynamical system in a higher-dimensional
observable subspace, in which the dynamics are linear, consider the system with quadratic
attracting manifold from Eq (25). The full three-dimensional Koopman observable vector
space is visualized in Fig 3. Trajectories that start on the invariant manifold y3 ¼ y21 , visualized
by the blue surface, are constrained to stay on this manifold. There is a slow subspace, spanned
by the eigenvectors corresponding to the slow eigenvalues μ and 2μ; this subspace is visualized
by the green surface. Finally, there is the original asymptotically attracting manifold of the orig-
inal system, y2 ¼ y21 , which is visualized as the red surface. The blue and red parabolic surfaces
always intersect in a parabola that is inclined at a 45° angle in the y2-y3 direction. The green

Fig 2. Illustration of two examples with a slowmanifold. In both cases, μ = −0.05 and λ = −1.

doi:10.1371/journal.pone.0150171.g002
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surface approaches this 45° inclination as the ratio of fast to slow dynamics become increas-
ingly large. In the full three-dimensional Koopman observable space, the dynamics are given
by a stable node, with trajectories rapidly attracting onto the green subspace and then slowly
approaching the fixed point.

Intrinsic coordinates defined by eigen-observables of the Koopman operator. The left
eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigenobservables).
The Koopman eigenfunctions of Eq (25) corresponding to eigenvalues μ and λ are:

φm ¼ x1; and φl ¼ x2 � bx21 with b ¼ l
l� 2m

: ð26Þ

The constant b in φλ captures the fact that for a finite ratio λ/μ, the dynamics only shadow the
asymptotically attracting slow manifold x2 ¼ x21 , but in fact follow neighboring parabolic tra-
jectories. This is illustrated more clearly by the various surfaces in Fig 3 for different ratios λ/μ.

In this way, a set of intrinsic coordinates may be determined from the observable functions
defined by the left eigenvectors of the Koopman operator on an invariant subspace. Explicitly,

φaðxÞ ¼ ξayðxÞ; where ξaK ¼ axa: ð27Þ

Fig 3. Visualization of three-dimensional linear Koopman system from Eq (25) along with projection of dynamics onto the x1-x2 plane. The attracting
slow manifold is shown in red, the constraint y3 ¼ y2

1 is shown in blue, and the slow unstable subspace of Eq (25) is shown in green. Black trajectories of the
linear Koopman system in y project onto trajectories of the full nonlinear system in x in the y1-y2 plane. Here, μ = −0.05 and λ = 1. Figure is reproduced with
Code 1 in S1 Appendix.

doi:10.1371/journal.pone.0150171.g003
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These eigen-observables define observable subspaces that remain invariant under the Koop-
man operator, even after coordinate transformations. As such, they may be regarded as intrin-
sic coordinates [46] on the Koopman-invariant subspace. As an example, consider the system
from Eq (25), but written in a coordinate system that is rotated by 45°:

Z ¼ x þ y

x ¼ x � y
and

x ¼ ðZþ xÞ=2

y ¼ ðZ� xÞ=2

9=
; ¼)

d
dt

Z ¼ m
2
ðZþ xÞ þ l

2
ðZ� xÞ � l

4
ðZþ xÞ2

d
dt

x ¼ m
2
ðZþ xÞ � l

2
ðZ� xÞ þ l

4
ðZþ xÞ2

ð28Þ

The original eigenfunctions, written in the new coordinate systems are:

φmðZ; xÞ ¼ Zþ x
2

φlðZ; xÞ ¼ Z� x
2

� l
l� 2m

ðZþ xÞ2
4

:

It is easy to verify that these remain eigenfunctions:

d
dt

φm ¼ _Z þ _x
2

¼ m
Zþ x
2

¼ mφm

d
dt

φl ¼ _Z � _x
2

� l
l� 2m

2ðZþ xÞð _Z þ _xÞ
4

¼ l
Z� x
2

� l
l� 2m

ðZþ xÞ2
4

� �
¼ lφl:

In fact, in this new coordinate system, it is possible to write the Koopman subspace system:

d
dt

Z

x

φl

2
64

3
75 ¼

3m
2

� m
2

ðl� 2mÞ
� m

2

3m
2

�ðl� 2mÞ
0 0 l

2
64

3
75

Z

x

φl

2
64

3
75: ð29Þ

Discrete-time formulation
A related formulation for discrete-time systems is given by:

x1

x2

" #
kþ1

¼
m 0

0 l

" #
x1

x2

" #
k

þ
0

ð1� lÞPð½x1�kÞ

" #
: ð30Þ

This system will also converge asymptotically to a slow manifold given by x2 = P(x1) when
|λ|�|μ| and |λ|<1. A similar argument can be made to that given in Eqs (23) and (25), but
with μN replacing Nμ, since:

½xN1 � kþ1 ¼ ð½x1�kþ1ÞN ¼ ðm½x1�kÞN ¼ mN ½xN1 �k: ð31Þ
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Thus, for discrete-time systems, the update is given by:

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775

¼

x1
x2
xN1
1

xN2
1

..

.

xNM
1

2
66666666664

3
77777777775

¼)

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775

kþ1

¼

m 0 0 0 � � � 0

0 l a1ð1� lÞ a2ð1� lÞ � � � aMð1� lÞ
0 0 mN

1 0 � � � 0

0 0 0 mN
2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � mN
M

2
66666666664

3
77777777775

y1
y2
y3
y4

..

.

yMþ2

2
66666666664

3
77777777775

k

:

ð32Þ

Discrete-time example. The case of a polynomial slow manifold is inspired by a simple
illustrative example from Tu et al. [17]:

x1

x2

" #
7!

lx1

mx2 þ ðl2 � mÞx21

" #
: ð33Þ

In this case, there is a polynomial stable manifold x2 ¼ x21 . Thus, they suggest the following
observable variables, which are intrinsic coordinates for the dynamics:

y1

y2

" #
¼

x1

x2 � x21

" #
¼)

y1

y2

" #
kþ1

¼
l 0

0 m

" #
y1

y2

" #
k

: ð34Þ

In our framework above, if the correct intrinsic variables were unknown, they could be dis-
covered by writing the system as:

y1
y2
y3

2
64

3
75 ¼

x1
x2
x21

2
64

3
75 ¼)

y1
y2
y3

2
64

3
75

kþ1

¼
l 0 0

0 m ðl2 � mÞ
0 0 l2

2
64

3
75

y1
y2
y3

2
64

3
75

k

: ð35Þ

Finally, in this observable function coordinate system, the left eigenvectors are:

x1 ¼
1

0

0

2
64

3
75 ¼) φ1ðxÞ ¼ x1

x2 ¼
0

0

1

2
64

3
75 ¼) φ2ðxÞ ¼ x21

x3 ¼
0

1

�1

2
64

3
75 ¼) φ3ðxÞ ¼ x2 � x21
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corresponding to the eigenvalues λ1 = λ, λ2 = λ2 and λ3 = μ. These eigenvectors diagonalize the
system and define the intrinsic coordinates.

Koopman operator optimal control
A long held hope of Koopman operator theory is that it would provide insights into the control
of nonlinear systems. Here, we present results of designing control laws using linear control
theory on the truncated Koopman operator; these Koopman operator optimal controllers
(KOOCs) then induce a nonlinear controller on the state-space that dramatically outperforms
optimal control on the linearized fixed point.

This is only a brief introduction to the theory of Koopman optimal control, and there are
numerous extensions that must be developed and explored. There are existing connections
between DMD and control systems [13], and there are ongoing efforts to extend this to the
Koopman operator framework. There are a number of systems where it is not clear how to use
the Koopman linear operator for control, and these will be briefly outlined below. In addition,
there are alternative nonlinear control methods related to Carleman linearization [42–44] that
may be connected to Koopman operator control. Moreover, we have not yet proven the nonlin-
ear optimality of these new controllers, but the numerical performance is striking.

Simple motivating example
As a motivating example, consider the nonlinear system in Eq (25), but with the stability of the
x2 direction reversed (i.e., λ = 1 instead of λ = −1), and modified to include actuation on the
second state:

d
dt

x1

x2

" #
¼

m 0

0 l

" #
x1

x2

" #
þ

0

�lx21

" #
þ

0

1

" #
u; ð36Þ

with μ = −.1 and λ = 1. Again, this may be put into a Koopman formalism as:

d
dt

y1
y2
y3

2
64

3
75 ¼

m 0 0

0 l �l

0 0 2m

2
64

3
75

y1
y2
y3

2
64

3
75þ

0

1

0

2
64

3
75u: ð37Þ

Now, let us assume that we have a quadratic cost function, as in the linear-quadratic-regula-
tor (LQR) control framework:

J ¼
Z 1

0

xTðtÞQxðtÞ þ uðtÞTRuðtÞ dt; ð38Þ

whereQ weighs the cost of deviations of the state x from the origin and R weighs the cost of
control expenditure. For now, we will consider the followingQ and R for simplicity:

Q ¼
1 0

0 1

" #
R ¼ 1: ð39Þ

In this way, all state deviations and control expenditures are weighed equally.
For linear systems, such as the linearization of Eq (36), it is possible to derive the matrix C

that results in the optimal control law u = −Cx; this control law is optimal in the sense that it
achieves the minimal attainable cost function J. However, this controller will only be optimal
for a small vicinity of the fixed point where linearization is valid. Outside this vicinity, when
nonlinear terms become large, all guarantees of optimality are lost.
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Instead of linearizing near the fixed point and computing the optimal LQR controller, here
we use the Koopman linear system in Eq (37). We still have the same cost on the state x, so we

use a modified weight matrix ~Q given by ~Q ¼ Q 0

0 0

" #
and ~R ¼ R. In this way, we may

develop an optimal linear controller for the Koopman representation of our nonlinear system.

In this case, the Koopman linear control law, given by u ¼ ~Cy, may be interpreted as a nonlin-
ear control law on the original state x:

u ¼ �½ ~K 1
~K 2

�
x1

x2

" #
� ~K 3x

2
1: ð40Þ

The results of the standard LQR compared with this Koopman operator optimal controller are
shown in Fig 4, and the Matlab code is provided in Code 2 in S1 Appendix. In this example, the
KOOC achieves a cost of approximately 1/3 the cost of standard LQR.

Limitations of Koopman operator optimal control
In the current framework, there are a number of limitations to the approach advocated above.
We will illustrate this on a simple variation on the example above, in which μ is unstable
instead of λ and the control input effects the first state x1 instead of x2:

d
dt

x1

x2

" #
m 0

0 l

" #
x1

x2

" #
þ

0

�lx21

" #
þ

1

0

" #
u; ð41Þ

with μ = .1 and λ = −1. In this example, it is necessary to move the actuation to the first state x1,
otherwise this state will be unstable and uncontrollable. What is more troubling, is that the

Fig 4. Illustration of LQR control around a nonlinear fixed point using standard linearization (black) and truncated Koopman (red). The Koopman
optimal controller achieves a much smaller overall cost, J, approximately 1/3 of the cost of the standard LQR solution.

doi:10.1371/journal.pone.0150171.g004
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subspace spanned by x1, x2, and x21 is no longer Koopman-invariant, since the expression for
the time derivative of y3 ¼ x21 is more complicated now:

d
dt

y3 ¼ 2x1
d
dt

x1 ¼ 2x1ðmx1 þ uÞ: ð42Þ

Thus, there is a troublesome extra nonlinear term x1 u in the expression for d
dt
y3. However, this

may not be too large of a problem, considering that we don’t weight excursions of y3 in the cost
function. What is a larger problem, is that the state y3 has a positive eigenvalue 2μ, which is
uncontrollable. Many off-the-shelf packages, such as Matlab, will fail to return an LQR control-
ler for such uncontrollable unstable systems.

Discussion
In this paper, we have investigated a special choice of Koopman observable functions that form
a finite-dimensional subspace of Hilbert space that contains the state in its span and remains
invariant under the Koopman operator. Any finite collection of Koopman eigenfunctions (i.e.,
eigen-observables) forms such a Koopman-invariant subspace. These Koopman eigenfunctions
may be extremely useful, providing intrinsic coordinates for a given nonlinear dynamical sys-
tem. In addition, given such a Koopman-invariant subspace, the Koopman operator restricted
to this subspace yields a finite-dimensional linear dynamical system to evolve these observables
forward in time. However, it is not always clear how to identify relevant Koopman eigenfunc-
tions, either from data or governing equations, or how to invert these coordinates to obtain
information about the progression of the underlying state variables. Moreover, in many cases
with control, the control objectives are defined directly on the state; this is the case in linear
quadratic regulator (LQR) control, for example. Thus, there is still interest in defining a Koop-
man invariant subspace that includes the original state variables as observable functions.

We demonstrate that for a large class of nonlinear systems with a single isolated fixed point,
it is possible to obtain such a Koopman-invariant subspace that includes the original state vari-
ables. We show that the eigen-observables that define this Koopman-invariant subspace may
be solved for as left-eigenvectors of the Koopman operator restricted to the subspace in the
chosen coordinate system. Finally, we demonstrate that the finite-dimensional linear Koopman
operator defined on this Koopman-invariant subspace may be used to develop Koopman oper-
ator optimal control (KOOC) laws using techniques from linear control theory. In particular,
we develop an LQR controller using the Koopman linear system, but retaining the cost func-
tion defined on the original state. The resulting control law may be thought of as inducing a
nonlinear control law on the state variable, and it dramatically outperforms standard LQR
computed on a linearization, reducing the cost expended by a factor of three. This is extremely
promising and may result in significantly improved control laws for systems with normal form
expansions near fixed points [1]. These expansions are commonly used in astrophysical prob-
lems to compute orbits around fixed points [59]; for example, the James Webb Space Telescope
will orbit the Sun-Earth L2 Lagrange point [60].

We also present a data-driven technique to identify the relevant Koopman observable func-
tions, leveraging a recent technique that identifies nonlinear dynamical systems in a nonlinear
function space using sparse regression; this algorithm is known as the sparse identification of
nonlinear dynamics (SINDy). Since the SINDy algorithm employs regression to determine an
approximate dynamical system from data, it is closely related to the DMD algorithm. Such
nonlinear dynamic regression algorithms have significant potential to add further understand-
ing in a broad range of applications, including fluid dynamics, neuroscience, robotics, epidemi-
ology, and video processing, where DMD has already been successfully demonstrated.
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As is often the case with interesting problems in mathematics, a deeper understanding of
one problem opens up a host of other open questions. For example, a complete classification of
nonlinear systems which admit Koopman-invariant subspaces that include the state variables
as observables remains an open and interesting problem. It is, however, clear that no system
with multiple fixed points, or any periodic orbits or more complex attractors can admit such a
finite-dimensional Koopman-invariant subspace containing the state variables explicitly as
observables. In these cases, another open problem is how to choose observable coordinates so
that a finite-rank truncation of the linear Koopman dynamics yields useful results, not just for
reconstruction of existing data, but for future state prediction and control. Finally, more effort
must go into understanding whether or not Koopman operator optimal control laws are opti-
mal in the sense that they minimize the cost function across all possible nonlinear control laws.

Much of the interest surrounding Koopman analysis and DMD has been centered around
the promise of obtaining finite-dimensional linear expressions for nonlinear dynamics. In fact,
any set of Koopman eigenfunctions span an invariant subspace, where it is possible to obtain
an exact and closed finite-dimensional truncation, although finding these nonlinear Koopman
eigen-observable functions is challenging. Moreover, Koopman invariant subspaces may or
may not provide enough information to propagate the underlying state, which is useful for
evaluating cost functions in optimal control laws. Koopman eigenfunctions provide a wealth of
information about the original system, including a characterization of invariant sets such as
stable and unstable manifolds, and these may not have simple closed-form representations, but
may instead need to be approximated from data. There are methods that identify almost invari-
ant sets and coherent structures [61, 62] using set oriented methods [63]. Related Ulam-Galer-
kin methods have been used to approximate eigenvalues and eigenfunctions of the Perron-
Frobenius operator [64].

To address these challenges, finite-dimensional linear approximations of the Koopman
operator from data have been widely explored, and they are valuable in many instances, espe-
cially for extracting dynamics on modal coherent structures. However, we have shown that it is
quite rare for a dynamical system to admit a finite-dimensional Koopman-invariant subspace
that includes the state variables explicitly, so that exact linear models to propagate the state
dynamics exist only for systems with a single isolated fixed point. This implies that approxi-
mate truncation of linear Koopman models for nonlinear phenomena with multiple fixed
points or more general attractors should be used with care for future-state prediction, especially
for off-attractor transients, as well as for the design of control laws. There is no free lunch with
Koopman analysis of nonlinear systems, as we trade finite-dimensional nonlinear dynamics for
infinite-dimensional linear dynamics, with an entirely new host of challenges.

Supporting Information
S1 Appendix.
(PDF)
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