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Abstract—The simultaneous localization and map building
(SLAM) problem asks if it is possible for an autonomous vehicle
to start in an unknown location in an unknown environment and
then to incrementally build a map of this environment while si-
multaneously using this map to compute absolute vehicle location.
Starting from the estimation-theoretic foundations of this problem
developed in [1]–[3], this paper proves that a solution to the
SLAM problem is indeed possible. The underlying structure of the
SLAM problem is first elucidated. A proof that the estimated map
converges monotonically to a relative map with zero uncertainty
is then developed. It is then shown that the absolute accuracy of
the map and the vehicle location reach a lower bound defined
only by the initial vehicle uncertainty. Together, these results
show that it is possible for an autonomous vehicle to start in
an unknown location in an unknown environment and, using
relative observations only, incrementally build a perfect map of
the world and to compute simultaneously a bounded estimate of
vehicle location. This paper also describes a substantial imple-
mentation of the SLAM algorithm on a vehicle operating in an
outdoor environment using millimeter-wave (MMW) radar to
provide relative map observations. This implementation is used to
demonstrate how some key issues such as map management and
data association can be handled in a practical environment. The
results obtained are cross-compared with absolute locations of the
map landmarks obtained by surveying. In conclusion, this paper
discusses a number of key issues raised by the solution to the
SLAM problem including suboptimal map-building algorithms
and map management.

Index Terms—Autonomous navigation, millimeter wave radar,
simultaneous localization and map building.

I. INTRODUCTION

T HE solution to the simultaneous localization and map
building (SLAM) problem is, in many respects, a “Holy

Grail” of the autonomous vehicle research community. The
ability to place an autonomous vehicle at an unknown location
in an unknown environment and then have it build a map, using
only relative observations of the environment, and then to use
this map simultaneously to navigate would indeed make such
a robot “autonomous”. Thus the main advantage of SLAM
is that it eliminates the need for artificial infrastructures ora
priori topological knowledge of the environment. A solution
to the SLAM problem would be of inestimable value in a
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range of applications where absolute position or precise map
information is unobtainable, including, amongst others, au-
tonomous planetary exploration, subsea autonomous vehicles,
autonomous air-borne vehicles, and autonomous all-terrain
vehicles in tasks such as mining and construction.

The general SLAM problem has been the subject of sub-
stantial research since the inception of a robotics research
community and indeed before this in areas such as manned
vehicle navigation systems and geophysical surveying. A
number of approaches have been proposed to address both the
SLAM problem and also more simplified navigation problems
where additional map or vehicle location information is made
available. Broadly, these approaches adopt one of three main
philosophies. The most popular of these is the estimation-the-
oretic or Kalman filter based approach. The popularity of this
approach is due to two main factors. First, it directly provides
both a recursive solution to the navigation problem and a
means of computing consistent estimates for the uncertainty in
vehicle and map landmark locations on the basis of statistical
models for vehicle motion and relative landmark observations.
Second, a substantial corpus of method and experience has
been developed in aerospace, maritime and other navigation
applications, from which the autonomous vehicle community
can draw. A second philosophy is to eschew the need for
absolute position estimates and for precise measures of uncer-
tainty and instead to employ more qualitative knowledge of the
relative location of landmarks and vehicle to build maps and
guide motion. This general philosophy has been developed by
a number of different groups in a number of different ways; see
[4]–[6]. The qualitative approach to navigation and the general
SLAM problem has many potential advantages over the esti-
mation-theoretic methodology in terms of limiting the need for
accurate models and the resulting computational requirements,
and in its significant “anthropomorphic appeal”. The third,
very broad philosophy does away with the rigorous Kalman
filter or statistical formalism while retaining an essentially
numerical or computational approach to the navigation and
SLAM problem. Such approaches include the use of iconic
landmark matching [7], global map registration [8], bounded
regions [9] and other measures to describe uncertainty. Notable
are the work by Thrunet al. [10] and Yamauchiet al. [11].
Thrun et al. use a bayesian approach to map building that
does not assume Gaussian probability distributions as required
by the Kalman filter. This technique, while very effective for
localization with respect to maps, does not lend itself to provide
an incremental solution to SLAM where a map is gradually
built as information is received from sensors. Yamauchiet al.
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use a evidence grid approach that requires that the environment
is decomposed to a number of cells.

An estimation-theoretic or Kalman filter based approach to
the SLAM problem is adopted in this paper. A major advantage
of this approach is that it is possible to develop a complete proof
of the various properties of the SLAM problem and to study sys-
tematically the evolution of the map and the uncertainty in the
map and vehicle location. A proof of existence and convergence
for a solution of the SLAM problem within a formal estima-
tion-theoretic framework also encompasses the widest possible
range of navigation problems and implies that solutions to the
problem using other approaches are possible.

The study of estimation-theoretic solutions to the SLAM
problem within the robotics community has an interesting
history. Initial work by Smithet al. [12] and Durrant-Whyte
[13] established a statistical basis for describing relationships
between landmarks and manipulating geometric uncertainty.
A key element of this work was to show that there must be a
high degree of correlation between estimates of the location of
different landmarks in a map and that indeed these correlations
would grow to unity following successive observations. At the
same time Ayache and Faugeras [14] and Chatila and Laumond
[15] were undertaking early work in visual navigation of mobile
robots using Kalman filter-type algorithms. These two strands
of research had much in common and resulted soon after in
the key paper by Smith, Self and Cheeseman [1]. This paper
showed that as a mobile robot moves through an unknown
environment taking relative observations of landmarks, the
estimates of these landmarks are all necessarily correlated
with each other because of the common error in estimated
vehicle location. This paper was followed by a series of related
work developing a number of aspects of the essential SLAM
problem ([2] and [3], for example). The main conclusion of this
work was twofold. First, accounting for correlations between
landmarks in a map is important if filter consistency is to be
maintained. Second, that a full SLAM solution requires that a
state vector consisting of all states in the vehicle modelandall
states of every landmark in the map needs to be maintained and
updated following each observation if a complete solution to
the SLAM problem is required. The consequence of this in any
real application is that the Kalman filter needs to employ a huge
state vector (of order the number of landmarks maintained in the
map) and is in general, computationally intractable. Crucially,
this work did not look at the convergence properties of the map
or its steady-state behavior. Indeed, it was widely assumed at
the time that the estimated map errors would not converge and
would instead execute a random walk behavior with unbounded
error growth. Given the computational complexity of the SLAM
problem and without knowledge of the convergence behavior
of the map, a series of approximations to the full SLAM
solution were proposed which assumed that the correlations
between landmarks could be minimized or eliminated thus
reducing the full filter to a series of decoupled landmark to
vehicle filters (see Renken [16], Leonard and Durrant-Whyte
[3] for example). Also for these reasons, theoretical work on
the full estimation-theoretic SLAM problem largely ceased,
with effort instead being expended in map-based navigation
and alternative theoretical approaches to the SLAM problem.

This paper starts from the original estimation-theoretic work
of Smith, Self and Cheeseman. It assumes an autonomous ve-
hicle (mobile robot) equipped with a sensor capable of making
measurements of the location of landmarks relative to the ve-
hicle. The landmarks may be artificial or natural and it is as-
sumed that the signal processing algorithms are available to de-
tect these landmarks. The vehicle starts at an unknown location
with no knowledge of the location of landmarks in the environ-
ment. As the vehicle moves through the environment (in a sto-
chastic manner) it makes relative observations of the location
of individual landmarks. This paper then proves the following
three results.

1) The determinant of any submatrix of the map covariance
matrix decreases monotonically as observations are suc-
cessively made.

2) In the limit as the number of observations increases, the
landmark estimates become fully correlated.

3) In the limit, the covariance associated with any single
landmark location estimate is determined only by the ini-
tial covariance in the vehicle location estimate.

These three results describe, in full, the convergence proper-
ties of the map and its steady state behavior. In particular they
show the following.

• The entire structure of the SLAM problem critically
depends on maintaining complete knowledge of the cross
correlation between landmark estimates. Minimizing or
ignoring cross correlations is precisely contrary to the
structure of the problem.

• As the vehicle progresses through the environment the er-
rors in the estimates of any pair of landmarks become more
and more correlated, and indeed never become less corre-
lated.

• In the limit, the errors in the estimates of any pair of land-
marks becomes fully correlated. This means that given the
exact location of any one landmark, the location of any
other landmark in the map can also be determined with
absolute certainty.

• As the vehicle moves through the environment taking ob-
servations of individual landmarks, the error in the esti-
mates of the relative location between different landmarks
reduces monotonically to the point where the map of rel-
ative locations is known with absolute precision.

• As the map converges in the above manner, the error in the
absolute location of every landmark (and thus the whole
map) reaches a lower bound determined only by the error
that existed when the first observation was made.

Thus a solution to the general SLAM problem exists and it is
indeed possible to construct a perfectly accurate map and simul-
taneously compute vehicle position estimates without any prior
knowledge of vehicle or landmark locations.

This paper makes three principal contributions to the solution
of the SLAM problem. First, it proves three key convergence
properties of the full SLAM filter. Second, it elucidates the true
structure of the SLAM problem and shows how this can be used
in developing consistent SLAM algorithms. Finally, it demon-
strates and evaluates the implementation of the full SLAM al-
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Fig. 1. A vehicle taking relative measurements to environmental landmarks.

gorithm in an outdoor environment using a millimeter wave
(MMW) radar sensor.

Section II of this paper introduces the mathematical struc-
ture of the estimation-theoretic SLAM problem. Section III then
proves and explains the three convergence results. Section IV
provides a practical demonstration of an implementation of the
full SLAM algorithm in an outdoor environment using MMW
radar to provide relative observations of landmarks. An algo-
rithm addressing pertinent issues of map initialization and man-
agement is also presented. The algorithm outputs are shown to
exhibit the convergent properties derived in Section III. Sec-
tion V discusses the many remaining problems with obtaining a
practical, large scale solution to the SLAM problem including
the development of suboptimal solutions, map management, and
data association.

II. THE ESTIMATION-THEORETICSLAM PROBLEM

This section establishes the mathematical framework em-
ployed in the study of the SLAM problem. This framework
is identical in all respects to that used in Smithet al. [1]
and uses the same notation as that adopted in Leonard and
Durrant-Whyte [3].

A. Vehicle and Landmark Models

The setting for the SLAM problem is that of a vehicle with
a known kinematic model, starting at an unknown location,
moving through an environment containing a population of
features or landmarks. The terms feature and landmark will be
used synonymously. The vehicle is equipped with a sensor that
can take measurements of the relative location between any in-
dividual landmark and the vehicle itself as shown in Fig. 1. The
absolute locations of the landmarks are not available. Without
prejudice, a linear (synchronous) discrete-time model of the
evolution of the vehicle and the observations of landmarks
is adopted. Although vehicle motion and the observation of
landmarks is almost always nonlinear and asynchronous in any
real navigation problem, the use of linear synchronous models

does not affect the validity of the proofs in Section III other
than to require the same linearization assumptions as those
normally employed in the development of an extended Kalman
filter. Indeed, the implementation of the SLAM algorithm
described in Section IV uses nonlinear vehicle models and
nonlinear asynchronous observation models. The state of the
system of interest consists of the position and orientation of the
vehicle together with the position of all landmarks. The state of
the vehicle at a time stepis denoted . The motion of the
vehicle through the environment is modeled by a conventional
linear discrete-time state transition equation or process model
of the form

(1)

where
state transition matrix;
vector of control inputs; and
vector of temporally uncorrelated process noise errors
with zero mean and covariance (see [17] and
[18] for further details).

The location of theth landmark is denoted . The “state tran-
sition equation” for theth landmark is

(2)

since landmarks are assumed stationary. Without loss of gener-
ality the number of landmarks in the environment is arbitrarily
set at . The vector of all landmarks is denoted

(3)

where denotes the transpose and is used both inside and out-
side the brackets to conserve space. The augmented state vector
containing both the state of the vehicle and the state of all land-
mark locations is denoted

(4)

The augmented state transition model for the complete system
may now be written as

...
...

...
. . .

...

...
...

(5)

(6)

where is the identity matrix and is
the null vector.

The case in which landmarks are in stochastic motion may
easily be accommodated in this framework. However, doing so
offers little insight into the problem and furthermore the conver-
gence properties presented by this paper do not hold.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 26, 2009 at 02:15 from IEEE Xplore.  Restrictions apply.



232 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001

B. The Observation Model

The vehicle is equipped with a sensor that can obtain obser-
vations of the relative location of landmarks with respect to the
vehicle. Again, without prejudice, observations are assumed to
be linear and synchronous. The observation model for theth
landmark is written in the form

(7)

(8)

where is a vector of temporally uncorrelated observation
errors with zero mean and variance . The term is the
observation matrix and relates the output of the sensor to
the state vector when observing theth landmark. It is im-
portant to note that the observation model for theth landmark
is written in the form

(9)

This structure reflects the fact that the observations are “rela-
tive” between the vehicle and the landmark, often in the form of
relative location, or relative range and bearing (see Section IV).

C. The Estimation Process

In the estimation-theoretic formulation of the SLAM
problem, the Kalman filter is used to provide estimates of
vehicle and landmark location. We briefly summarize the
notation and main stages of this process as a necessary prelude
to the developments in Section III and IV of this paper. Detailed
descriptions may be found in [17], [18] and [3]. The Kalman
filter recursively computes estimates for a state which
is evolving according to the process model in (5) and which
is being observed according to the observation model in (7).
The Kalman filter computes an estimate which is equivalent
to the conditional mean , where

is the sequence of observations taken up until time. The
error in the estimate is denoted .
The Kalman filter also provides a recursive estimate of the
covariance in the estimate

. The Kalman filter algorithm now proceeds recursively
in three stages:

• Prediction: Given that the models described in (5) and (7)
hold, and that an estimate of the state at time

together with an estimate of the covariance exist,
the algorithm first generates a prediction for the state es-
timate, the observation (relative to theth landmark) and
the state estimate covariance at time according to

(10)

(11)

(12)

respectively.
• Observation: Following the prediction, an observation

of the th landmark of the true state

is made according to (7). Assuming correct landmark
association, an innovation is calculated as follows:

(13)

together with an associated innovation covariance matrix
given by

(14)

• Update: The state estimate and corresponding state esti-
mate covariance are then updated according to

(15)

(16)

where the gain matrix is given by

(17)

The update of the state estimate covariance matrix
is of paramount importance to the SLAM problem.
Understanding the structure and evolution of the state
covariance matrix is the key component to this solution
of the SLAM problem.

III. STRUCTURE OF THESLAM PROBLEM

In this section proofs for the three key results underlying the
structure of the SLAM problem are provided. The implications
of these results will also be examined in detail. The appendix
provides a summary of the key properties of positive semidefi-
nite matrices that are invoked implicitly in the following proofs.

A. Convergence of the Map Covariance Matrix

The state covariance matrix may be written in block form as

where
error covariance matrix associated with the ve-
hicle state estimate;
map covariance matrix associated with the land-
mark state estimates; and
cross-covariance matrix between vehicle and
landmark states.

Theorem 1: The determinant of any submatrix of the map
covariance matrix decreases monotonically as successive obser-
vations are made.

The algorithm is initialized using a positive semidefinite (psd)
state covariance matrix . The matrices and are
bothpsd, and consequently the matrices , ,

and are all
psd. From (16), and for any landmark

(18)
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The determinant of the state covariance matrix is a measure of
the volume of the uncertainty ellipsoid associated with the state
estimate. Equation (18) states that the total uncertainty of the
state estimate does not increase during an update.

Any principal submatrix of apsdmatrix is alsopsd(see Ap-
pendix 1). Thus, from (18) the map covariance matrix also has
the property

(19)

From (12), the full state covariance prediction equation may be
written in the form

where

Thus, as landmarks are assumed stationary, no process noise is
injected in to the predicted map states. Consequently, the map
covariance matrix and any principal submatrix of the map co-
variance matrix has the property that

(20)

Note that this is clearly not true for the full covariance matrix
as process noise is injected in to the vehicle location predictions
and so the prediction covariance grows during the prediction
step.

It follows from (19) and (20) that the map covariance matrix
has the property that

(21)

Furthermore, the general properties ofpsdmatrices ensure that
this inequality holds forany submatrix of the map covariance
matrix. In particular, for any diagonal element of the map
covariance matrix (state variance),

Thus the error in the estimate of the absolute location of every
landmark also diminishes.

Theorem 2: In the limit the landmark estimates become fully
correlated.

As the number of observations taken tends to infinity a lower
limit on the map covariance limit will be reached such that

(22)

Writing as and as for nota-
tional clarity, the SLAM algorithm update stage can be written
as

(23)

where

(24)

The update of the map covariance matrix can be written
as

(25)

Equation (22) and (25) imply that the matrix .
The inverse of the innovation covariance matrix is always
psdbecause the observation noise covarianceis psd, there-
fore (22) requires that

(26)

Equation (26) holds for all and therefore the block columns of
are linearly dependent. A consequence of this fact is that

in the limit the determinant of the covariance matrix of a map
containing more than one landmark tends to zero.

(27)

This implies that the landmarks become progressively more cor-
related as successive observations are made. In the limit then,
given the exact location of one landmark the location of all other
landmarks can be deduced with absolute certainty and the map
is fully correlated.

Consider the implications of (26) upon the estimateof the
relative position between any two landmarksand of the
same type.

The covariance of is given by

With similar landmark types, and so (26) implies
that the block columns of are identical. Furthermore, be-
cause is symmetric it follows that

(28)

Therefore, in the limit, and the relationship between
the landmarks is known with complete certainty. It is important
to note that this result does not mean that the determinants of
the landmark covariance matrices tend to zero. In the limit the
absolute location of landmarks may still be uncertain.

Theorem 3: In the limit, the lower bound on the covariance
matrix associated with any single landmark estimate is deter-
mined only by the initial covariance in the vehicle estimate
at the time of the first sighting of the first landmark.

As described previously, the covariance of the landmark lo-
cation estimates decrease as successive observations are made.
The best estimates are obviously obtained when the covariance
matrices of the vehicle process noiseand the observation
noise are small. The limiting value and hence lower bound of
the state covariance matrix can be obtained when the vehicle is

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 26, 2009 at 02:15 from IEEE Xplore.  Restrictions apply.



234 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001

stationary giving . Under these circumstances it is conve-
nient to use the information form of the Kalman filter to examine
the behavior of the state covariance matrix. Continuing with the
single landmark environment, the state covariance matrix after
this solitary landmark has been observed forinstances can be
written as

(29)

where because ,

(30)

Using (29) and (30) can now be written as

(31)

where

Invoking the matrix inversion lemma for partitioned matrices,

(32)
where

Examination of the lower right block matrix of (32) shows how
the landmark uncertainty estimate stems only from the initial
vehicle uncertainty . To find the lower bound on the state co-
variance matrix and in turn the landmark uncertainty the number
of observations of the landmark is allowed to tend to infinity to
yield in the limit

(33)
Equation (33) gives the lower bound of the solitary landmark
state estimate variance as . Examine
now the case of an environment containing landmarks,
The smallest achievable uncertainty in the estimate of the
th landmark when the landmark has been observed at the

exclusion of all other landmarks is . If
more than one landmark is observed as , as will be the
case in any nontrivial navigation problem, then it is possible
for the landmark uncertainty to be further reduced by theorem
1. In the limit the lower bound on the uncertainty in theth
landmark state is written as

(34)

and is determined only by the initial covariance in the vehicle
location estimate . Note that because was set to zero in

search of the lower bound the vehicle uncertainty remains un-
changed at as . In the simple case where and

are identity matrices in the limit the certainty of each land-
mark estimate achieves a lower bound given by the initial un-
certainty of the vehicle.

When the process noise is not zero the two competing effects
of loss of information content due to process noise and the in-
crease in information content through observations, determine
the limiting covariance. The problem is now analytically in-
tractable, although the limiting covariance of the map can never
be below the limit given by the above equation and will be a
function of and .

It is important to note that the limit to the covariance applies
because all the landmarks are observed and initialized solely
from the observations made from the vehicle. The covariances
of landmark estimates can not be further reduced by making ad-
ditional observations to previously unknown landmarks. How-
ever, incorporation of external information, for example using
an observation made to a landmark whose location is available
through external means such as GPS, will reduce the limiting
covariance.

In summary, the three theorems derived above describe, in
full, the convergence properties of the map and its steady state
behavior. As the vehicle progresses through the environment
the total uncertainty of the estimates of landmark locations re-
duces monotonically to the point where the map of relative lo-
cations is known with absolute precision. In the limit, errors
in the estimates of any pair of landmarks become fully corre-
lated. This means that given the exact location of any one land-
mark, the location of any other landmark in the map can also
be determined with absolute certainty. As the map converges in
the above manner, the error in the absolute location estimate of
every landmark (and thus the whole map) reaches a lower bound
determined only by the error that existed when the first obser-
vation was made.

Thus a solution to the general SLAM problem exists and it is
indeed possible to construct a perfectly accurate map describing
the relative location of landmarks and simultaneously compute
vehicle position estimates without any prior knowledge of land-
mark or vehicle locations.

IV. I MPLEMENTATION OF THE SIMULTANEOUS LOCALIZATION

AND MAP BUILDING ALGORITHM

This section describes a practical implementation of the si-
multaneous localization and map building (SLAM) algorithm
on a standard road vehicle. The vehicle is equipped with a mil-
limeter wave radar (MMWR), which provides observations of
the location of landmarks with respect to the vehicle. The im-
plementation is aimed at demonstrating key properties of the
SLAM algorithm; convergence, consistency and boundedness
of the map error.

The implementation also serves to highlight a number of key
properties of the SLAM algorithm and its practical develop-
ment. In particular, the implementation shows how generally
nonlinear vehicle and observation models may be incorporated
in the algorithm, how the issue of data association can be dealt
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Fig. 2. The test vehicle, showing mounting of the MMWR and GPS systems.

with, and how landmarks are initialized and tracked as the algo-
rithm proceeds.

The implementation described here is, however, only a first
step in the realization and deployment of a fully autonomous
SLAM navigation system. A number of substantive further is-
sues in landmark extraction, data association, reduced compu-
tation and map management are discussed further in following
sections.

A. Experimental Setup

Fig. 2 shows the test vehicle; a conventional utility vehicle
fitted with a MMWR system as the primary sensor used in the
experiments. Encoders are fitted to the drive shaft to provide
a measure of the vehicle speed and a linear variable differen-
tial transformer (LVDT) is fitted to the steering rack to provide
a measure of vehicle heading. A differential GPS system and
an inertial measurement unit are also fitted to the vehicle but
are not used in the experiments described below. In the environ-
ment used for the experiments, DGPS was found to be prone to
large errors due to the reflections caused by nearby large metal
structures (usually known as “multipath” errors). The radar em-
ployed in the experiments is a 77–GHz FMCW unit. The radar
beam is scanned 360in azimuth at a rate of 1–3 Hz. After signal
processing the radar provides an amplitude signal (power spec-
tral density), corresponding to returns at different ranges, at an-
gular increments of approximately 1.5. This signal is thresh-
olded to provide a measurement of range and bearing to a target.
The radar employs a dual polarization receiver so that even and
odd bounce specularities can be distinguished. The radar is ca-
pable of providing range measurements to 250 m with a resolu-
tion of 10 cm in range and 1.5in bearing. A detailed descrip-
tion of the radar and its performance can be found in [19]. Fig. 3
shows the test vehicle moving in an environment that contains a
number of radar reflectors. These reflectors appear as omni-di-
rectional point landmarks in the radar images. These, together
with a number of natural landmark point targets, serve as the
landmarks to be estimated by the SLAM algorithm.

The vehicle is driven manually. Radar range and bearing mea-
surements are logged together with encoder and steer informa-
tion by an on-board computer system. In the evaluation of the
SLAM algorithm, this information is employed without anya

Fig. 3. Test vehicle at the test site. A radar point landmark can be seen in the
left foreground.

priori knowledge of landmark location to deduce estimates for
both vehicle position and landmark locations.

To evaluate the SLAM algorithm, it is necessary to have some
idea of the true vehicle track and true landmark locations that
can be compared with those estimated by the SLAM algorithm.
For this reason the true landmark locations were accurately sur-
veyed for comparison with the output of the map building algo-
rithm. A second navigation algorithm that employs knowledge
of beacon locations is then run on the same data set as used to
generate the map estimates. (This algorithm is very similar to
that described in [20].) This algorithm provides an accurate es-
timate of true vehicle location which can be used for comparison
with the estimate generated from the SLAM algorithm.

In the following, the vehicle state is defined by
where and are the coordinates of the

centre of the rear axle of the vehicle with respect to some global
coordinate frame and is the orientation of the vehicle axis.
The landmarks are modeled as point landmarks and represented
by a cartesian pair such that , . Both
vehicle and landmark states are registered in the same frame of
reference.

1) The Process Model:Fig. 4 shows a schematic diagram
of the vehicle in the process of observing a landmark. The fol-
lowing kinematic equations can be used to predict the vehicle
state from the steering and velocity inputs :

where is the wheel-base length of the vehicle. These equations
can be used to obtain a discrete-time vehicle process model in
the form

(35)

for use in the prediction stage of the vehicle state estimator. The
landmarks in the environment are assumed to be stationary point
targets. The landmark process model is thus

(36)
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Fig. 4. Vehicle and observation kinematics.

for all landmarks . Together, (35) and (36) define the
state transition matrix for the system.

2) The Observation Model:The MMWR used in the exper-
iments returns the range and bearing to a landmark
. Referring to Fig. 4, the observation model can be written as

(37)

where and are the noise sequences associated with the
range and bearing measurements, and is the lo-
cation of the radar given, in global coordinates, by

Equation (37) defines the observation model for a specific
landmark.

3) Estimation Equations:The theoretical developments in
this paper employed only linear models of vehicle and landmark
kinematics. This was necessary to develop the necessary proofs
of convergence. However, the implementation described here
requires the use of nonlinear models of vehicle and landmark
kinematics and nonlinear models of landmark observation

.
Practically an extended Kalman filter (EKF) rather than a

simple linear Kalman filter is employed to generate estimates.
The EKF uses linearized kinematic and observation equations
for generating state predictions. The use of the EKF in vehicle
navigation and the necessary assumptions needed for successful
operation is well known (see, for example, the development in
[20]), and is thus not developed further here.

4) Map Initialization and Management:In any SLAM al-
gorithm the number and location of landmarks is not knowna
priori . Landmark locations must be initialized and inferred from

Fig. 5. A typical test run. Only 30% of radar observations correspond to
identifiable landmarks.

observations alone. The radar receives reflections from many
objects present in the environment but only the observations re-
sulting from reflections from stationary point landmarks should
be used in the estimation process. Fig. 5 shows a typical test run
and the locations that correspond to all the reflections received
by the radar. Only about 30% of the radar observations corre-
sponded to identifiable point landmarks in the environment. In
addition to these, a large freight vehicle and a number of nearby
buildings also reflect the radar beam and produced range and
bearing observations. This data set illustrates the importance
of correct landmark identification, initialization and subsequent
data association. In this implementation a simple measure of
landmark quality is employed to initialize and track potential
landmarks. Landmark quality implicitly tests whether the land-
mark behaves as a stationary point landmark. Range and bearing
measurements which exhibit this behavior are assigned a high
quality measure and are incorporated as a landmark. Those that
do not are rejected.

The landmark quality algorithm is described in detail in Ap-
pendix 2. The algorithm uses two landmark lists to record “ten-
tative” and “confirmed” targets. A tentative landmark is initial-
ized on receipt of a range and bearing measurement. A tentative
target is promoted to a confirmed landmark when a sufficiently
high quality measure is obtained. Once confirmed, the landmark
is inserted into the augmented state vector to be estimated as
part of the SLAM algorithm. The landmark state location and
covariance is initialized from observation data obtained when
the landmark is promoted to confirmed status. Fig. 6 shows the
computed landmark quality obtained at the end of the test run
described in this paper.

B. Experimental Results

The vehicle starts at the origin, remaining stationary for ap-
proximately 30 s and then executing a series of loops at speeds
up to 10 m/s. Fig. 7 shows the overall results of the SLAM al-
gorithm. The estimated landmark locations are designated by
stars. The actual (true) surveyed landmark locations are desig-
nated by circles. The vehicle path is shown with a solid line. In
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Fig. 6. Calculated landmark qualities at the end of the test run. Landmark
quality ranges from 1 (for highest quality) to 0 (for lowest quality). Landmarks
are marked with a star. Landmarks which are also circled are the artificial
landmarks whose locations were surveyed so that the accuracy of the map
building algorithm can be evaluated.

Fig. 7. The “true” vehicle path together with surveyed (circles) and estimated
(starred) landmark locations.

order to compute the “true” vehicle path, surveyed locations of
the artificial point landmarks were used for running a map based
estimation algorithm [20]. The absolute accuracy of the vehicle
path obtained using this algorithm was computed to be approx-
imately 5 cm.

1) Vehicle Localization Results:The differences between
the “true” vehicle path shown in Fig. 7 and the path estimated
from the SLAM algorithm are too small to be seen on the scale
used in Fig. 7. Fig. 8 shows the error between true and SLAM
estimated position in more detail. The figure shows the actual
error in estimated vehicle location in bothand as a function
of time (the central solid line). The figure also shows 95%

confidence limits in the estimate error. These confidence
bounds are derived from the state estimate covariance matrix
and represent theestimatedvehicle error.

The actual vehicle error is clearly bounded by the confidence
limits of estimated vehicle error. The estimate produced by the

Fig. 8. Actual error in vehicle location estimate inx andy (solid line), together
with 95% confidence bounds (dotted lines) derived from estimated location
errors. The reduction in the estimated location errors around 110 s is due to
the vehicle slowing down and stopping.

Fig. 9. Range and bearing innovations together with associated 95%
confidence bounds.

SLAM algorithm is thus consistent (and indeed is conservative).
The estimated vehicle error as defined by the confidence bounds
does not diverge so the estimates produced are stable. The jump
in error near the start of the run is caused by the vehicle accel-
erating when the model implicitly assumes a constant velocity
model. The slight oscillation in errors and estimated errors are
due to the vehicle cornering and thus coupling long-travel with
lateral errors. Selecting a suitable model for the vehicle motion
requires giving consideration to the tradeoff between the filter
accuracy and the model complexity. It is possible to improve
the results obtained by assuming a constant acceleration model,
and relaxing the nonholonomic constraint used in the derivation
of the vehicle kinematic (35) by incorporating vehicle slip. This
clearly increases the computational complexity of the algorithm.

The SLAM algorithm thus generates vehicle location esti-
mates which are consistent, stable and have bounded errors.

2) Map Building Results:Fig. 9 shows the innovations in
range and bearing observations together with the estimated
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Fig. 10. Difference between the actual and estimated location for landmark 1.
The 95% confidence limit of the difference is shown by dotted lines.

Fig. 11. Difference between the actual and estimated location for landmark 3.
The 95% confidence limit of the difference is shown by dotted lines.

95% confidence limits. The innovations are the only available
measure for analysing on-line filter behavior when true vehicle
states are unavailable. The innovations here indicate that the
filter and models employed are consistent.

In addition to the 10 radar reflectors placed in the environ-
ment, the map building algorithm recognizes a further seven nat-
ural landmarks as suitable point landmarks. These can be seen
in Fig. 7 as stars (confirmed landmarks) without circles (without
a survey location). Some of these natural landmarks correspond
to the legs of a large cargo moving vehicle parked in the test site.
The others do not correspond to any obvious identifiable point
landmarks, but were recognized as landmarks simply because
they returned consistent point-like radar reflections. The land-
mark qualities calculated at the end of the test run are shown
in Fig. 6.

Figs. 10 and 11 show the error between the actual and esti-
mated landmark locations for two of the radar reflectors. One
of these landmarks (landmark 1) was observed from the initial
vehicle location at the start of the test run. The second landmark

Fig. 12. Decreasing uncertainty in landmark location estimates.

Fig. 13. Standard deviation of the landmark location estimate for all detected
landmarks. As predicted, the uncertainty in landmark location estimates
decrease monotonically.

(landmark 3) was first observed about 30 s later into the run.
Figs. 10 and 11 also show the associated 95% confidence limits
in the location estimates. As before, these are calculated using
theestimatedlandmark location covariances. The landmark lo-
cation estimates are thus consistent (and conservative) with ac-
tual landmark location errors being smaller than the estimated
error.

It can be seen that the initial variance of landmark 3 is much
greater than that of landmark 1. This is due to the fact that the
uncertainty in the vehicle location is small when landmark 1 is
initialized, whereas landmark 3 is initialized while the vehicle is
in motion and uncertainty in vehicle location is relatively high.
These figures also show that there is some bias in the landmark
location estimates. However, this bias is well within the accu-
racy of the true measurement (estimated to be m).

Figs. 12 and 13 show the estimated standard deviations in
and of all landmark location estimates produced by the filter
(for graphical purposes, the variances are set to zero until the
landmark is confirmed). As predicted by theory, the estimated
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errors in landmark location decrease monotonically; and thus
the overall error in the map reduces at each observation. Visu-
ally, the errors in landmark location estimates reach a common
lower bound. As predicted by theory, this lower bound corre-
sponds to the initial uncertainty in vehicle location.

V. DISCUSSION ANDCONCLUSIONS

The main contribution of this paper is to demonstrate the ex-
istence of a nondivergent estimation theoretic solution to the
SLAM problem and to elucidate upon the general structure of
SLAM navigation algorithms. These contributions are founded
on the three theoretical results proved in Section II; that uncer-
tainty in the relative map estimates reduces monotonically, that
these uncertainties converge to zero, and that the uncertainty in
vehicle and absolute map locations achieves a lower bound.

Propagation of the full map covariance matrix is essential to
the solution of the SLAM problem. It is the cross-correlations
in this map covariance matrix which maintain knowledge of the
relative relationships between landmark location estimates and
which in turn underpin the exhibited convergence properties.
Omission of these cross correlations destroys the whole struc-
ture of the SLAM problem and results in inconsistent and diver-
gent solutions to the map building problem.

However, the use of the full map covariance matrix at each
step in the map building problem causes substantial compu-
tational problems. As the number of landmarksincreases,
the computation required at each step increases as, and re-
quired map storage increases as. As the range over which
it is desired to operate a SLAM algorithm increases (and thus
the number of landmarks increases), it will become essential to
develop a computationally tractable version of the SLAM map
building algorithm which maintains the properties of being con-
sistent and nondivergent. There are currently two approaches to
this problem; the first uses bounded approximations to the esti-
mation of correlations between landmarks, the second method
exploits the structure of the SLAM problem to transform the
map building process into a computationally simpler estimation
problem.

Bounded approximation methods use algorithms which make
worst-case assumptions about correlatedness between two es-
timates. These include the covariance intersect method [21],
and the bounded region method [22]. These algorithms result
in SLAM methods which have constant time update rules (in-
dependent of the number of landmarks in the map), and which
are statistically consistent. However, the conservative nature of
these algorithms means that observation information is not fully
exploited and consequently convergence rates for the SLAM
method are often impracticably slow (and in some cases diver-
gent).

Transformation methods attempt to re-frame the map
building problem in terms of alternate map or landmark
representations which particularly have relative independence
properties. For example, it makes sense that landmarks which
are distant from each other should have estimates that are
relatively independent and so do not need to be considered in
the same estimation problem. One example of a transformation
method is the relative filter [23], [24] which directly estimates

the relative, rather than absolute, location of landmarks. The
relative landmark location errors may be considered inde-
pendent thus resulting in a map building algorithm which
has constant time complexity regardless of the number of
landmarks. More generally, a number of approaches are being
developed for constructing “local maps” and embedding these
in a map management process. Here, consistent (full filter)
local maps are linked by conservative transformations between
local maps to generate and maintain larger scale maps. This
embodies the idea that local landmarks are more important to
immediate navigation needs than distant landmarks, and that
landmarks can naturally be grouped into localized sets. Such
transformation methods can exploit relatively low degrees of
correlation between landmark elements to generate relatively
decoupled submaps. The advantage of these transformation
methods is that they highlight the real issue of large-scale map
management.

The theoretical results described in this paper are essential
in developing and understanding these various approaches
to map building. As discussed in the introduction there are a
number of existing approaches to the localization and map
building problem. The important contribution of this paper is
the proof that a solution exists. Furthermore, it presents an
algorithm that is efficient in the sense that it makes optimal
use of the observations of relative location of landmarks for
estimating landmark and vehicle locations, a property inherent
in the Kalman filter. The value of all other alternative real-time
SLAM algorithms that use similar information can be evaluated
with respect to this “full” solution. This is particularly true in
the case where simplifications are made to SLAM algorithms
in order to increase the computational efficiency.

The most effective algorithm for SLAM depends much on
the operating environment. For example, the relative sparseness
of occupied regions in the environment used for the example
shown in Section IV, or the grid based approaches proposed in
[11] and [10]. In an indoor environment the use of only point
landmarks as in Section IV will be inefficient as the information
such as the ranges to walls will not be utilized. The framework
proposed in this paper, however, can incorporate geometric fea-
tures such as lines (for example, see [25]). In environments
where geometric features are difficult to detect, for example in
an underground mine, the proposed strategy will not be feasible.
Many navigation systems used in outdoor environments rely on
exogenous systems such as GPS. Clearly if external information
is available these can be incorporated to the framework proposed
in this paper. This is particularly useful in the situations where
the exogenous sensor is unreliable, for example GPS not being
able to observe sufficient numbers of satellites or multi-path er-
rors caused when operating in cluttered environments.

The implementation described in this paper is relatively small
scale. It does, however, serve to illustrate a range of practical
issues in landmark extraction, landmark initialization, data as-
sociation, maintenance and validation of the SLAM algorithm.
The implementation and deployment of a large-scale SLAM
system, capable of vehicle localization and map building over
large areas, will require further development of these practical
issues as well as a solution to the map management problem.
However, such a substantial deployment would represent a
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major step forward in the development of autonomous vehicle
systems.

APPENDIX I
PROPERTIES OFPOSITIVE SEMIDEFINITE MATRICES

1) Diagonal entries of apsdmatrix are nonnegative.
2) If is psd then for any matrix ,

is psd.
3) If and are bothpsdthen

.
4) All principal submatrices ofpsdmatrices arepsd.
5) For , and , if

is psd, then

APPENDIX II
LANDMARK INITIALIZATION ALGORITHM

The following describes the procedure used to initialize the
landmark locations and associate observations to particular
landmarks. This procedure also evaluates the quality of the
landmarks. This algorithm is an essential precursor to the
estimation process. It is not specific to the radar sensor but can
be generalized to any sensor capable of observing landmarks
in the environment.

Two landmark lists are maintained. One list stores landmarks
that are confirmed to be valid , and the other
stores potential landmarks yet to be validated, .
Initially both lists are empty. The map management algorithm
proceeds as follows:

1) Given an observation at time instant from the
radar, the location of the landmark possibly responsible
for this observation
and its covariance is calculated using the following
relationship.

where

and

where is the covariance matrix of the vehicle loca-
tion estimate extracted from the state covariance matrix

and is the measurement noise covariance.

2) An observation is associated with a landmarkin the
confirmed landmark set if

where is the covariance of the landmark location
estimate , extracted from the state covariance matrix

. Note that is the Mahalanobis distance
between and , and its probability distribution in
this case is that of a variable with two degrees of
freedom. Therefore, a suitable value for can be
selected such that the null hypothesis thatand are
the same is not rejected at some desired confidence level.
Also if the above condition results in an observation
being associated with more than one landmark, the
observation is rejected. If accepted, the observation is
then used to generate a new state estimate.

3) If an observation cannot be associated with any confirmed
landmark, then it is checked against the set of potential
landmarks for possible association. Mahalanobis distance
is again used as the criterion for association. If an associ-
ation with the potential landmark is justified the new
observation is used to update the location of the potential
landmark and its covariance . In addition, a counter

indicating the number of associations with landmark
is also incremented.

4) An observation that is not associated with either a con-
firmed or a potential landmark can be considered as a new
landmark. In this case is added to the list of potential
landmarks as , a counter is initialized and the
number of the time step is assigned to a timer .

5) The potential landmark list , is then exam-
ined against the following criteria.

(a) If is greater than a predetermined number of
associations , the landmark is considered to
be sufficiently stable and therefore is transferred to
the confirmed landmark list.

(b) If is greater than a predetermined
then the landmark has not achieved the desired
minimum number of associations over a sufficient
length of time. Landmark is therefore removed
from the potential landmark list.

6) The probability density function (PDF) of the observa-
tions associated to a given landmark can be used to esti-
mate its “quality”. As suggested in [26] the quality of
landmark is calculated using the following equation:

(38)

where is the number of observations so far associated
with the landmark, where is the innovation of the ob-
servation associated with landmarkobserved at time

. is the innovation covariance as defined by (14).
The landmark quality is the ratio between the sum of
the probability densities of the observations and the max-
imum value of the probability density that is achieved
when all the observations coincide with their predicted
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values. Therefore landmark qualitieslie between 0 and
1. At reasonable intervals, landmark qualities can be cal-
culated and landmarks that do not achieve a predeter-
mined can be deleted from the map.

7) Return to step 2 when the next observation is received.
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