CDS 101/110: Lecture 5.1 Integral State Feedback

October 24, 2016

Goals:

• Brief discussion about integral feedback in state feedback

Reading:

- Åström and Murray, Feedback Systems-2e, Section 7.4
- For Wednesday: start reading FBS-2e, Sections 8.1-8.2.

State space controller design for linear systems

Theorem: If (A,B) is reachable, the eigenvalues of (A-BK) can be arbitrarily placed.

If the desired reference is constant at r = 0, then the system is a **regulator**, and we need only choose K to stabilize. Else, we need to determine k_r .

• If we want zero reference error at zero frequency, for $r \neq 0$, then:

•
$$\dot{x} = (A - BK)x + Bk_r r, y = Cx \rightarrow (A - BK)x_e + Bk_r r = 0, y_e = Cx_e$$

• $\therefore y_e = -C(A - BK)^{-1}Bk_r r$

• If we want $y_e = r$, then $k_r = -[C(A - BK)^{-1}B]^{-1}$

Integral Feedback

Motivation:

- Accurate models (i.e., precise models for A,B,C matrices) are needed to ensure zero reference errors.
- An *Integral feedback* term can be used compensate for uncertainty in these terms.

Approach:

- Define a new state z such that $z = \int (y r) dt$
- Require $z \to 0$, which in turn will ensure that $y \to r$ over time.
- Details:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ y - r \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ Cx - r \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ -1 \end{bmatrix} r$$
$$\equiv \tilde{A}x + \tilde{B}_1 u + \tilde{B}_2 r$$

- If we find a feedback that stabilizes this system, then $\dot{z} \rightarrow 0$, and $y \rightarrow 0$
- Choose Feedback law: $u = -Kx k_i z + k_r r = -K_i q + k_r r$
 - K_i is state feedback on the extended state $q = \begin{bmatrix} x & z \end{bmatrix}^T$, which includes integral term

Integral Feedback

Analysis:

• Closed loop system looks like:

$$- \frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A - BK & -Bk_i \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} Bk_r \\ -1 \end{bmatrix} r$$

- Where k_i is the "integral gain," and gain k_r will be chosen as above:

$$k_r = -[C(A - BK)^{-1}B]^{-1}$$

Integral Feedback Example

Uncontrolled System:

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -5 & -3 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 \end{bmatrix}$

- Let's use state feedback (u = -Kr), and place the poles at $[-5, -3 \pm 3i]$. Using the MATLAB *place* function yields
 - $K = [78 \ 43 \ 8]$
- Compare the unit step response of the open loop and closed loop systems. The steady state values is far from the desired value of 1

Integral Feedback Example

Reference Input :

• Now use $u = -Kr + k_r r$, with k_r chosen assuming perfect knowledge of (A,B,C,D)

-
$$k_r = -[C(A - BK)^{-1}B]^{-1} = 90$$

- Note that step response now converges to unity gain

Model Mismatch :

- Now perturb the matrices (A,B,C) by 10% (multiply them all by 0.9).
- Use feedback gain *K* and reference gain *k*_r which were computed for the unperturbed system matrices.
 - Step response now converges to about 10% steady state error.

Integral Feedback Example

Add Integral State Feedback:

- Introduce new state $\dot{z} = y r$;
 - Set the pole associated with integral feedback to -6.
 - Note that step response converges to unity gain for perfect model knowledge

Integrate Feedback & Model Mismatch:

- Perturb the matrices (A,B,C) by 10% as above.
- Use feedback gain K_i and reference gain k_r of the unperturbed system matrices.
 - Step response converges to zero steady state error
 - But note (by looking at time scale difference in the plots) that response is slightly delayed.

Observers: First Look

Use observer to determine the current state if you can't measure it

- Estimator looks at inputs and outputs of plant and estimates the current state
- Can show that if a system is observable then you can construct and estimator
- Use the *estimated* state as the feedback

 $u = K \hat{x}$

- Next week: basic theory of state estimation and observability
- CDS 112: Kalman filtering and theory of optimal observers