
CDS 101/110 Homework #5 Solution

Problem 1 (CDS 101, CDS 110): (15 points)

From textbook page 10-3,

L =
GZ1

Z1 + Z2

Because Z1 = Z2 and a = 0,

L(s) =
G(s)

2

=
ka1a2

2s(s+ a1)(s+ a2)

From Nyquist criteria, we know that the system is stable when there is no enclosure of the critical point −1
(i.e. L(iω) > −1 on the real line). First, find L(iω),

L(iω) =
ka1a2

2iω(iω + a1)(iω + a2)
=
−ika1a2(−iω + a1)(−iω + a2)

2ω(ω2 + a21)(ω2 + a22)
=
−ika1a2(a1a2 − (a1 + a2)iω − ω2)

2ω(ω2 + a21)(ω2 + a22)

Then, set the imaginary part of L(iω) = 0 to obtain the phase crossover frequency.

ka1a2(a1a2 − ω2) = 0 =⇒ ωpc =
√
a1a2

Then, we can find L(iω) at ω = ωpc,

L(iωpc) =
−k

2(a1 + a2)

For stability,
−k

2(a1 + a2)
> −1 =⇒ k < 2(a1 + a2)

Gain margin, GM is given by

GM =
1

|L(iωpc)|
=

2(a1 + a2)

k

Problem 2 (CDS 101, CDS 110): (10 points)

To draw a Nyquist plot, we will first find the Bode plot.

First, consider the 1 − e−sτ term. This term is a circle centered at 1 in the complex plane. And, thus the
Bode plot is given by
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Note that the magnitude oscillates between 0 and 2 (i.e. between −∞ dB and ∼ 6 dB) and the phase
oscialles between -90 deg and 90 deg.

Then, consider a/(sτ(s+ a)) where the Bode plot is given by
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slope = -20dB/decade

slope = -40dB/decade

Sum the two Bode plots together to obtain the Bode plot for P (s)
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Then, the Nyquist plot of P (s) is given by mapping the Bode plot into the complex plane
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From the Bode plot, note that the frequency gain is the largest when s→ 0.

lim
s→0

P (s) = 1

Then, the maximum porportional gain kp ≤ 1 so that kpP (s) for all frequencies is no larger than 1 (i.e.
stable). Hence, kp = 1 at the boundary of stability.

You may use L’Hospital’s Rule or Pade aprroximation to obtain the limit of P (s). Pade approximation of
the exponential is given by

e−sτ =
1− sτ/2
1 + sτ/2
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Problem 3 (CDS 101, CDS 110): (30 points)

(a) Pole of closed loop response Gyr(s) is the zero of 1 + L(s).

1 + L(s) =
s(s− 1) +K2(1 +K1s)

s(s− 1)

The zero is given by
s(s− 1) +K2(1 +K1s) = 0

s =
−(K1K2 − 1)±

√
(K1K2 − 1)2 − 4K2

2

Thus, the condition for stability is K1K2−1 > 0 =⇒ K1K2 > 1. So, the system is stable if K1K2 > 1.

(b) Two cases:

K1K2 ≤ 1
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K1K2 > 1
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(c) The loop transfer function L(s) has one unstable pole. Therefore, we need one clockwise encirclement
of the critical point −1 in the Nyquist plot of L(iω) to obtain stability.

L(iω) =
K2(1 +K1iω)

iω(iω − 1)
=
−iK2(1 +K1iω)(−iω − 1)

ω(ω2 + 1)
=
−iK2(−1− (K1 + 1)iω +K1ω

2)

ω(ω2 + 1)

Set the imaginary part of L(iω) = 0 to obtain the phase crossover frequency.

K2(−1 +K1ω
2) = 0 =⇒ ωpc =

√
1

K1

Then, we can find L(iω) at ω = ωpc,
L(iω) = −K1K2

For stability (i.e. one encirclement of −1), we want −K1K2 < −1 =⇒ K1K2 > 1.

Problem 4 (CDS 110): (20 points)

Note that e−iωτ = cos(ωτ)− i sin(ωτ). So, we can rewrite L(iω) as

L(iω) =
k

iω
(cos(ωτ)− i sin(ωτ)) =

−ik
ω

(cos(ωτ)− i sin(ωτ))

Set the imaginary part of L(iω) = 0 to obtain the phase crossover frequency.

− k
ω

cos(ωτ) = 0 =⇒ ωpc =
nπ

2τ

Then, we can find L(iω) at ω = ωpc,

L(iω) = ∓2τk

nπ

We are interested in the left most crossover. So, n = 1 and

L(iω) = −2τk

π
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For stability,

−2τk

π
< −1 =⇒ k >

π

2τ

It follows that the system will always be unstable if the time delay is too long. If the time delay is measured,
the difficulty can be avoided by making the gain inversely proportional to the time delay. A reasonable
choice is k = 0.5/τ which gives the stability margin sm = 0.63 for all time delays τ . The response time will
however be proportional to τ . Thus, we show that if we can measure the time delay, it is possible to choose
a gain that gives a stability margin of sm ≥ 0.6 for all time delays τ .
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