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Gmapping
Occupancy Grid: “map” is a grid of “cells”:  {𝑥𝑥𝑖𝑖,𝑗𝑗

𝑚𝑚}

• 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑚𝑚 = 0 if cell (i,j) is empty; 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑚𝑚 = 1 if cell (i,j) is occupied

• 𝑝𝑝 𝑥𝑥𝑘𝑘+1
𝑟𝑟 , {x𝑖𝑖,𝑗𝑗

m }𝑘𝑘+1 x1:𝑘𝑘
r , {xi,j

m}𝑘𝑘 , y1:𝑘𝑘+1 (estimate cell occupancy 
probability)

Gmapping:
• Uses a Rao-Blackwellized particle filter for estimator
• Actually computes 𝑝𝑝 𝑥𝑥1:𝑇𝑇

𝑟𝑟 , {𝑥𝑥𝑖𝑖,𝑗𝑗
𝑚𝑚} x1:𝑘𝑘

r , xk
m, y1:𝑘𝑘+1



Axioms of Set-Based Probability
Probability Space:

– Let Ω be a set of experimental outcomes (e.g., roll of dice)

• the Ai are “elementary events” and subsets of Ω are termed “events”
• Empty set {∅} is the “impossible event”
• S={Ω} is the “certain event”

– A probability space (Ω, F,P)
• F = set of subsets of Ω, or “events”, P assigns probabilities to events

Ω = 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑁𝑁

Probability of an Event—the Key Axioms:
– Assign to each Ai a number, P(Ai), termed the “probability” of event Ai

– P(Ai) must satisfy these axioms
1. P(Ai) ≥ 0
2. P(S)  = 1
3. If events A,B ϵ Ω are “mutually exclusive,” or disjoint, elements or 

events (A∩B= {∅}), then 

P A ∪ B = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃(𝐵𝐵)



Axioms of Set-Based Probability
As a result of these three axioms and basic set operations (e.g., 
DeMorgan’s laws, such as 𝐴𝐴 ∪ 𝐵𝐵=𝐴𝐴 ∩ 𝐵𝐵) 

– P({∅})=0
– P(A) = 1-P(𝐴𝐴)    ⇒   P(A) + P(𝐴𝐴) = 1, where 𝐴𝐴 is complement of A
– If 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑁𝑁 mutually disjoint

For Ω an infinite, but countable, set we add the “Axiom of infinite 
additivity” 

3(b). If 𝐴𝐴1, 𝐴𝐴2, … are mutually exclusive, 

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets…

P 𝐴𝐴1 ∪ 𝐴𝐴1 ∪ ⋯ ∪ 𝐴𝐴𝑁𝑁 = 𝑃𝑃 𝐴𝐴1 + 𝑃𝑃 𝐴𝐴1 + ⋯ + 𝑃𝑃(𝐴𝐴𝑁𝑁)

P 𝐴𝐴1 ∪ 𝐴𝐴1 ∪ ⋯ = 𝑃𝑃 𝐴𝐴1 + 𝑃𝑃 𝐴𝐴1 + ⋯



Continuous Random Variables (CRVs)
Let Ω = ℝ (an uncountable set of events) 

– Problem: it is not possible to assign probabilities to subsets of ℝ which 
satisfy the above Axioms

– Solution:
• let “events” be intervals of ℝ:   A  = {x | xl ≤ x ≤ xu}, and their countable 

unions and intersections.
• Assign probabilities to these events

• x is a “continuous random variable (CRV).
P 𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 [𝑥𝑥𝑙𝑙, 𝑥𝑥𝑢𝑢 ]

Some basic properties of CRVs
– If x is a CRV in 𝐿𝐿, 𝑈𝑈 , then P(L ≤ x ≤ U) = 1
– If y in 𝐿𝐿, 𝑈𝑈 , then P(L ≤ y ≤ x) = 1 - P(y ≤ x ≤ U)



Probability Density Function (pdf)

E.g. 
– Uniform Probability pdf:    

𝑝𝑝 𝑥𝑥 = 1
𝑏𝑏−𝑎𝑎

– Gaussian (Normal) pdf:

𝑝𝑝 𝑥𝑥 = 1
𝜎𝜎 2𝜋𝜋

𝑒𝑒−1
2

𝑥𝑥−𝜇𝜇
𝜎𝜎

2

µ =“mean” of pdf
σ = “standard deviation”

𝑝𝑝 𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢 ≡ �
𝑥𝑥𝑙𝑙

𝑥𝑥𝑢𝑢
𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑝𝑝 𝑥𝑥

𝑝𝑝 𝑥𝑥

Most of our Estimation theory will be built on the Gaussian distribution



Expectation

Expectation: (key for estimation)
– Let x be a CRV with distribution p(x). The expected value (or mean) of x 

is 
𝐸𝐸[𝑥𝑥] = �

−∞

∞
𝑥𝑥𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑 𝐸𝐸[𝑔𝑔(𝑥𝑥)] = �

−∞

∞
𝑔𝑔(𝑥𝑥)𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑

Mean Square:

Variance: 

𝐸𝐸[𝑥𝑥2] = �
−∞

∞
𝑥𝑥2𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑

𝜎𝜎2 = 𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)2] = �
−∞

∞
(𝑥𝑥 − 𝜇𝜇)2𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑 𝜇𝜇 𝑥𝑥 = 𝐸𝐸[𝑥𝑥]



A stochastic system whose state is characterized by a time evolving 
CRV, x(t), t ε [0,T].  

– At each t, x(t) is a CRV
– x(t) is the “state” of the random process, which can be characterized by

Random Processes can also be characterized by:
– Joint probability function

– A random process x(t) is Stationary if p(x,t+τ)=p(x,t) for all τ

– Correlation Function

Random Processes (continued)

P[𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥(𝑡𝑡) ≤ 𝑥𝑥𝑢𝑢] = ∫−∞
∞ 𝑝𝑝 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑

𝐸𝐸[𝑥𝑥 𝑡𝑡1 𝑥𝑥(𝑡𝑡2)] = ∫−∞
∞ 𝑥𝑥1 𝑥𝑥2 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡1, 𝑡𝑡2 𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2 ≡ 𝜌𝜌(𝑡𝑡1, 𝑡𝑡2)

P[𝑥𝑥1𝑙𝑙 ≤ 𝑥𝑥(𝑡𝑡1) ≤ 𝑥𝑥1𝑢𝑢; 𝑥𝑥2𝑙𝑙 ≤ 𝑥𝑥(𝑡𝑡2) ≤ 𝑥𝑥2𝑢𝑢] = ∫𝑥𝑥1𝑙𝑙

𝑥𝑥1𝑢𝑢 ∫𝑥𝑥2𝑙𝑙

𝑥𝑥2𝑢𝑢 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡1, 𝑡𝑡2 𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2

Joint probability 
density function

Correlation function
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Joint and Conditional Probability

• 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦) = 𝑃𝑃(𝑥𝑥, 𝑦𝑦)

• If 𝑋𝑋 and 𝑌𝑌 are independent then 
𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃(𝑥𝑥) 𝑃𝑃(𝑦𝑦)

• 𝑃𝑃(𝑥𝑥 | 𝑦𝑦) is the probability of 𝑥𝑥 given 𝑦𝑦
𝑃𝑃(𝑥𝑥 | 𝑦𝑦) = 𝑃𝑃(𝑥𝑥, 𝑦𝑦) / 𝑃𝑃(𝑦𝑦)
𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃(𝑥𝑥 | 𝑦𝑦) 𝑃𝑃(𝑦𝑦)

• If 𝑋𝑋 and 𝑌𝑌 are independent then
𝑃𝑃(𝑥𝑥 | 𝑦𝑦) = 𝑃𝑃(𝑥𝑥)

)|()|(),( zyPzxPzyxP =

Conditional independence

Equivalent to 
• 𝑃𝑃 𝑥𝑥 𝑧𝑧 = 𝑃𝑃 𝑥𝑥 𝑧𝑧, 𝑦𝑦
• 𝑃𝑃 𝑦𝑦 𝑧𝑧 = 𝑃𝑃(𝑦𝑦|𝑧𝑧, 𝑥𝑥)
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Law of Total Probability, Marginals

∑=
y

yxPxP ),()(

∑=
y

yPyxPxP )()|()(

∑ =
x

xP 1)(

Discrete case

∫ =1)( dxxp

Continuous case

∫= dyypyxpxp )()|()(

∫= dyyxpxp ),()(

𝑝𝑝 𝑥𝑥 𝑦𝑦 = � 𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝑧𝑧 𝑝𝑝( 𝑧𝑧 𝑦𝑦 𝑑𝑑𝑑𝑑𝑃𝑃 𝑥𝑥 𝑦𝑦 = � 𝑝𝑝 𝑥𝑥 𝑦𝑦, 𝑧𝑧 𝑝𝑝(𝑧𝑧|𝑦𝑦)



12

Bayes Formula

evidence
prior likelihood

)(
)()|()(

)()|()()|(),(
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Normalization

)|(
)|(),|(),|(

zyP
zxPzxyPzyxP =

Bayes Rule with Background 
Knowledge
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Simple Example

• Suppose robot measures z
• What is P(open|z)?

• P(open|z) is diagnostic.
• P(z|open) is causal.
• Often causal knowledge is easier to 

obtain.
• Bayes rule allows us to use causal 

knowledge:
• Causal knowledge can come from a 

frequentist approach
• Causal knowledge can come from a 

model.

• 𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑧𝑧 = 𝑃𝑃 𝑧𝑧 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
𝑃𝑃(𝑧𝑧)
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