Three Major Map Models

Grid-Based: Feature-Based: Topological:
Collection of discretized Collection of landmark Collection of nodes and
obstacle/free-space pixels locations and correlated their interconnections
uncertainty
* +
+ +
+ + + ¥
E.lfes, Moravec, Smith/Self/Cheeseman, Kuipers/Byun,
Thrun, Bur gardj‘Fox, Durrant—Whyte, Leonard, Chong/Kleeman,
Simmons, Koenig, Nebot, Christensen, etc. Dudek, Choset,

Konolige, etc. Howard, Mataric, etc.



hree Major Map Models

Grid-Based Feature-Based Topological

Resolution vs. Scale

Discrete localization Arbitrary localization Localize to nodes

Computational

Grid size and resolution | Landmark covariance (N?) | Minimal complexity

Complexity
Exploration Frontier-based No inherent exploration Graph exploration
Strategies exploration
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Gmapping
Occupancy Grid: “map” is a grid of “cells” {x/";
« x;; = 0ifcell (i,j) is empty; x;’; = 1if cell (i,j) is occupied
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Gmapping:

 Uses a Rao-Blackwellized particle filter for estimator
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e Actually computes p (xI:T' {xl?,nj



Axioms of Set-Based Probability

Probabllity Space:
— Let Q be a set of experimental outcomes (e.g., roll of dice)
Q=1{A1,4;, ..., Ay }

» the A, are “elementary events” and subsets of Q are termed “events”
 Empty set {@} is the “impossible event”
o S={Q}is the “certain event”

— A probability space (2, F,P)
» F =set of subsets of 2, or “events”, P assigns probabilities to events

Probability of an Event—the Key Axioms:
— Assign to each A;a number, P(A;), termed the “probability” of event A,
— P(A;) must satisfy these axioms
1. P(A)=0
2. P(S) =1
3. If events AB € Q2 are “mutually exclusive,” or disjoint, elements or
events (ANB= {@}), then

P(AUB) = P(4) + P(B)



Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g.,
DeMorgan’s laws, such as A U B=A N B)

- P({@})=0
— P(A)=1-P(A) = P(A) + P(4) = 1, where 4 is complement of A
- IfA A,, ..., Ay mutually disjoint

P(A,UA;U---UAy) =P(A)) + P(A)) + -+ P(Ay)

For Q an infinite, but countable, set we add the “Axiom of infinite
additivity”
3(b). If A4, A,, ... are mutually exclusive,

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets...



Continuous Random Variables (CRVs)

Let Q = R (an uncountable set of events)

— Problem: it is not possible to assign probabilities to subsets of R which
satisfy the above Axioms

— Solution:

» let “events” be intervals of R: A = {x| X, <x <x,}, and their countable
unions and intersections.

« Assign probabilities to these events

P(x; < x < x,) = Probability that x takes values in [x;, x, ]

* X Is a “continuous random variable (CRV).

Some basic properties of CRVs
— IfxisaCRVin [L,U],thenP(L<x<U)=1
— Ifyin[L,U],thenP(L<y<x)=1-P(y<x<U)



Probability Density Function (pdf)

Xu
p(; <x < xy) Ej p(x)dx
X

A

E.Q. p(x)

— Uniform Probability pdf: . — o

p(x) = -—

=V

— Gaussian (Normal) pdf:

1 _1(x=p)?

p(x):o_ zne 2(0)
p(x)

KU ="mean” of pdf “H

o = “standard deviation”

a
X

Most of our Estimation theory will be built on the Gaussian distribution



Expectation

Expectation: (key for estimation)
— Let x be a CRV with distribution p(x). The expected value (or mean) of x
IS

oo

Elx] = j xp(x)dx E[g()] = j 9P dx

Mean Square: E[x?] =j x%p(x)dx

Variance: % = E[(x —w)?] = f_oo (x — pn)?p(x)dx u(x) = E[x]



Random Processes (continued)

A stochastic system whose state is characterized by a time evolving
CRV, x(1), t € [0,T].

— Ateacht, x(t) isa CRV
— X(t) is the “state” of the random process, which can be characterized by

Plx,; < x(t) < x,] = [, p(x, t)dx

Random Processes can also be characterized by:  Jjoint probability

— Joint probability function density function
4 \
X X
Plxy; < x(t1) < X145 %21 S x(2) < x24] = fxlllu fxzzlup(xl,xz, ty, ty) dxidx,

— A random process x(t) is Stationary if p(x,t+1)=p(x,t) for all <

Correlation function

— Correlation Function /_H

E[x(t)x(tz)] = f_oooo X1 X (X1, X7, ty, tp) dxydx,; = p(ty, ty)



Joint and Conditional Probability

e PX=xandY =y) = P(x,y)

 |f X and Y are independent then

P(x,y) = P(x) P(y) Conditional independence
e P(x|y) isthe probability of x given y
P(x|y) = P(x,y)/P() P(x,y|2)=P(x]|2)P(y|2)

P(x,y) = P(x|y)P(y)

e |f X and Y are independent then Equivalent to
* P(x|z) = P(x|z,y)

P(x|y) = P(x) e P(y|2) = P(y|z,x)
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Law of Total Probability, Marginals

Discrete case

> P(x) =1
P(x) =2 P(xy)

P(x) =2 P(x| y)P(y)

Continuous case

jp(x) dx =1

p(x) = [ p(x, y) dy

p(x) = [ p(x| y)p(y) dy

P(xly) = EP(XD’»Z)P(ZD’) p(x|y) = fp(xly,z)p(zly)dz
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Bayes Formula

P(x,y) =P(x]y)P(y) = P(y| X)P(x)

—

P(x|y) =

P(y|x) P(x) likelihood - prior
P(y) evidence

Normalization

Py %) P(x)

P(x|y)=

n="P(y)"

=71 P(y[x)P(X)
_ 1
> PYIX)P(x)

P(y)

Bayes Rule with Background

Knowledge

P(x]y,z) =

P(ylx,2) P(x|2)

P(ylz)
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Simple Example

® Suppose robot measures z
* What is P(open|z)?

P(open|z) is diagnhostic.

P(z]open) is causal.

Often causal knowledge is easier to
obtain.

Bayes rule allows us to use causal
knowledge:

e Causal knowledge can come from a
frequentist approach

e Causal knowledge can come from a
model.
P(z|open)p(open)
P(z)

P(open|z) =

13
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