CDS 101/110: Lecture 10.3
Final Exam Review

December 2, 2016

Schedule:
(1) Posted on the web Monday, Dec. 5 by noon.
(2) Due Friday, Dec. 9, at 5:00 pm.
(3) Determines 30% of your grade

Instructions on Front Page.
e Five hour limited time take-home.

e Same collaboration rules as Mid-Term




Key Concepts up to Mid Term

Review:
 Frequency domain Convert control system description to 1%t order form
e Solution and characterization of o.d.e.s
e Matrix exponential, equilibria, stability of equilibria, phase space
e Lyapunov Function and stability
e System linearization, and stability/stabilization of linearized models.
e Convolution Integral, impulse response
* Performance characterization for 15t and 2"9 order systems:
e Step response overshoot, rise time, settling time
e System Frequency Response
* Discrete Time System
e State Feedback, eigenvalue placement

e Reachability, reachable canonical form, test for reachability



Key Concepts From Mid-Term Onward

Review:
* Frequency Domain Concepts
e Transfer Function (poles/zeros)
e Block Diagram Algebra
 Bode Plot
* Loop Diagram Concepts
e Loop Transfer Function (closed loop poles and zeros)
* Nyquist Plot and Nyquist Criterion for closed loop stability
e Gain, Phase, and Stability Margins
e PID Controllers
e Effect of “P”, “I”, and “D” terms of closed loop behavior
e Reachability, reachable canonical form, test for reachability
e Loop Shaping
e Lead/Lag compensators
e Converting requirements/spec.s to frequency domain equivalents

e Sensitivity Functions (“gang of four”)



Frequency Domain Modeling

Defn. The frequency response of a linear system is the relationship between the gain
and phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.
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Bode plot (1940; Henrik Bode)
*Plot gain and phase vs input frequency
eGain is plotting using log-log plot
*Phase is plotting with log-linear plot

*Can read off the system response to a
sinusoid — in the lab or in simulations
Linearity = can construct response to
any input (via Fourier decomposition)
*Key idea: do all computations in terms
of gain and phase (frequency domain)



Transfer Function Properties

y(t) = Cett (;1:({}) — (8] — A)—IB) + (C(sf _A)B+ D)est
transient steady state
Theorem. The transfer function for a linear system £ = (4, B, C, D) Is given by

G(s)=C(sI—A)1*+D seC
Theorem. The transfer function G (s) has the following properties (for SISO systems):

* (5(s) Is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for the
matrix A and n(s) has order less than or equal to d(s).

* The steady state frequency response of 2 has gain |G(jw)| and phase arg G(jw):
u = Msin(wt)

y = |G(iw)|Msin(wt + arg G (iw)) + transients

Remarks

® G(s) is the Laplace transform of the impulse response of X

® Typically we write “y = G(s)u” for Y(s) = G(s)U(s), where Y(s) & U(s) are Laplace
transforms of y(t) and u(t).

® MATLAB: G = ss2tf(A, B, C, D)



Laplace Transform Review

Constant Coefficient O.D.E.: Laplace Transform (assuming zero initial conditions)

dn dn—l dn—l
—y(t) + a4 -1 y(t) + -+ apy(t) = by Tin—1

qin u(t) + -+ byu(t) (¥
L{'}C
(s + ays™ 1+ +ay_1s+ay)Y(s) = (bys™ 1+ + b, )U(s)

C G(s) = Y(s) _ (bys™ 1 + -+ + by) _ )
(s) = U(s) (s"+a;s™1+-+a, s+a,) d(s)

* Roots of d(s) are called the poles of transfer function G(s)
« If p is a system pole, then y = eP? is a solution to (*) with u(t) = 0
» Poles are strictly defined by matrix A..

* Roots of n(s) are called the zeros of G(s)
« If sis a pole of G(s), then G(s)est is an output if d(s) # 0.

e Outputiszeroatsifn(s)=0.



Poles and Zeros

x = Ax + Bu G(s) = % * Roots of d(s) are called poles of G(s)
S
y=Cx+Du d(s) = det(sI — A) * Roots of n(s) are called zeros of G(s)

Poles of G(s) determine the stability of the (closed loop) system
® Denominator of transfer function = characteristic polynomial of state space system
® Provides easy method for computing stability of systems
® Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of G(s) related to frequency ranges with limited transmission
® A pure imaginary zero at s = iw blocks any output at that frequency (G(iw) = 0)
® Zeros provide limits on performance, especially RHP zeros

MATLAB: pole(G), zero (G), pzmap(G)
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Block Diagram Algebra

Type Diagram Transfer function
U, Vi V) nn,
Ser'ieS - Hy u > L) - Hyzu = Hyzquy u =
14 uz 1 1Y d1d2
’ nd, +nd
31 2 1“1
Paralle — @ dd,
” yzul
r U, Vi
@ iy - Hy y nld2
Feedback H,, = ==
: 1+ H I S T dd,
Yoy
V2 u, 8

® These are the basic manipulations needed; some others are possible

® Formally, could work all of this out using the original ODESs (= nothing really new)




Sketching the Bode Plot for a Transfer Function (1/2)

Evaluate transfer function on imaginary axis

ImGliw
M = |G(iw)|, ¢ = arctan (o)

Re G(io)

® Plot gain (M) on log/log scale
® Plot phase () on log/linear scale

log |G(im)| =~ {

0 ifw<a
loga —logw ifw > a,

0 if o <a/10

LG(iw) ~ {1 —45 —45(logw — loga) a/10 < w < 10a

Frequency w [rad/s]

Frequency [rad/s]

® : : : : . —90 ifw > 10a.
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Sketching the Bode Plot for a Transfer Function (2/2)

@4

Complex poles G(s) =

log |G(iw)] = 1

[ if o <€ wy

SG(lw) & 4
() —180 ifw > wy.

@5
Gls)= 5 2
5° + 2w s + o
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Bode Plot Units

What are the units of a Bode Plot?

« Magnitude: The ordinate (or “y-axis”) of magnitude plot is
determined by 201log,, |G(iw)|

* Decibels,” names after A.G. Bell
 Phase: Ordinate has units of degrees (of phase shift)
e The abscissa (or “x-axis”) Is log,,(frequency) (usually, rad/sec)

Example: simple first order system: G(s) =

14+7Ts
e Single poleats = -1/t
1
) G(la))l o ‘1+Lrw V1+w?2T2
e |n decibels:

1
201og0|G(iw)| = 201logo 1 — 201og (1 + (wT)?)?
= —10log;o(1 + (w7)?)



Basic Nyquist Plot (review)

(no poles of L(s) on imaginary axis)

+i0o p==_ S
L(s)
* Nyquist “D” \ /\ \ .
contour \ p (0 =-0 T
. I > 5 T — w=0" 1
e Take limit as ,Re(s) g Q=00
R—
2
—joo Gyr(s) 524+ 20wes + w?
Nyquist Contour (I); Nyquist Plot
« Start from 0, and move along positive » Formed by tracing s around the Nyquist
Imaginary axis (increasing frequency) contour, I', and mapping through L(s) to

complex plane representing magnitude

 Follow semi-Circle, or arc at infinity, in
4 and phase of L(s).

clockwise direction (connecting the | |
endpoints of the imaginary axis) e |l.e., the image of L(s) as s traverses I' is

e From —ico to zero on imaginary axis the Nyquist plot

* Note, portion of plot corresponding to ) anl: frofr_nccl:omplsx ar}aly5|s, v_\:ce e
w < 0 is mirror image of @ > 0 trying to find number of zeros (if any) in

RHP, which leads to instability
12



Nyquist Criterion

Thm (Nyquist). Consider the Nyquist plot Consequence:

for loop transfer function L(s). Let « 1fZ> 1, then (1 + L(s)) has RHP
P # RHP poles of open loop L(s) zeros, which means that G,,,.(s) has
N  # clockwise encirclements of -1 RHP poles.
(counterclockwise Is negative) * G,,(s) is unstable with simple unity
Z # RHP zeros of 1 + L(s) feedback, and control C(s)
Then

Z=N+P

13



What can you do with a Nyquist Analysis?

d
Set Up (somewhat artificial): . | ;

e Given: P(s) My C(s) Pis) F1 VY
e (any unstable roots known)

e Given: C(s) -1 ¢
e (any unstable roots known)

« Q: can negative output feedback The Nyquist plot logic

stabilize the system (stable G, (s))? + Poles of G,,(s) are zeros of
Possible Solutions: 1 4 P()C(s) = dp(s)dc(s) +np(s)nc(s)
dp(s)dc(s)

G __ PC Ny (s)nc(s) _ _
yr(s) T 14PC dp(s)de(s)+np(s)nc(s)  ° If G,,-(s) is unstable, then it has at

least one pole in RHP

« Compute and check poles of G,
_ _ . * An unstable pole of G,,-(s) implies and
* Find another way to determine existence of unstable (RHP) zero of 1 + P(s)C(s)

unstable poles without computing roots of
* Nyquist plot and Nyquist Criterion

dp(s)dc(s) +np(s)ne(s) allow us to determine if 1 + PC has
RHP zeros without polynomial solving.
14



Nyquist Example (unstable system)

k

Bode Plots of Open Loop L(s) = P(s)C(s) =

s(s—1)

Nyquist Contour and Plot

» Must account for pole on the iw axis -~k Im
/7
tioo | " a) w=0" - 4o (d),” l (a)
bh) w =+ - —oo J
(a) C)w:—oo—)a)zo_ Il /(b) Re:
ADw=0 >w=0" \
. \
(d) . w = ge'?® for [-90°,90°] ' l (c)
() . k ke ' s
G(s=ee‘¢)z — — S
oo —ce®  —¢ ~ -
w=0"




Nyquist Example (unstable system)

Nyquist Contour and Plot

w=0"
I ="k Im
A Im /’
oo (dw=0 >w=07 / l (a)
_ /
(a) w = ee'? for [k—900,900] /(b) Re
- G(s = ee'?) ~ > '
(d) ke ko
(c) =—0 = (—cos¢ +ising) (c)
—joo \\\ _
w=0"
Accounting:

 One open loop pole In RHP: P =1
* One clockwise encirclement of -1 point: N = 1

e /=N+P=14+1=2 = two unstable poles in closed loop system



Overview: PID control

t de

r ° PID ——s P(s) -y U= kf-’ﬁJijf/ e(r)dr+ha It
0 ¢

|t de

1 [ :/‘JJ(E“LT;A e(T)dt+1q dr)

Parametrized by:
® k,, the “proportional gain”

Alternatively:
® k;, the “integral gain” L ky, _— kg4
® |4, the “derivative gain” ot gy T ey,

Utility of PID
® PID control is most common feedback structure in engineering systems
® For many systems, only need PI or PD (special case)
® Many tools for tuning PID loops and designing gains

Y

-t

(a) PID using error feedback (b) PID using two degrees of freedom



Proportional Feedback

Simplest controller choice: u = kpe

—> Y

® Effect: lifts gain with no change in phase r kn > P(s)

® Good for plants with low phase up to
desired bandwidth

® Bode: shift gain up by factor of kp
® Step response: better steady state error, ko >0
but with decreasing stabllity

05¢1 1
0
0 10 20
41
~ kﬂ
— -
ﬂq )
=
-2
0 10 20

Time ¢

19



Proportional + Integral Compensation

Use to eliminate steady state error

® Effect: lifts gain at low frequency " k) + ki| Y P(s)
® Gives zero steady state error °
® Bode: infinite SS gain + phase lag

® Step response: zero steady state error, with L >0 k>0
. . yo. ’ {3
smaller settling time, but more overshoot

L(s)

0 10 20

=KI/K Time ¢




Phase (deg); Magnitude (dB)

Proportional + Integral + Derivative (PID)
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General Loop Transfer Functions

r = reference input

e = error
% n % _
- =+ Fes) € c(s) u v P(s) )y u= control

v = control + disturbance

N = true output (what we

|
|
| lant
Feed 1 want to control')
| forward | y = measured output
Controller Process
o *, 7
System System Gangjc&f SIX
”OUtpUtS” PCF P 1 ”inputs” 4 N\
/ /1+PC 1+PC 1+PC\ JE= FCF ;- PC g _P
/}’\ PCF P —PC 1+PC ! 1+PC | 1+PC
7 1+PC  1+PC 1+PC | /7 |
CF 1 —C CF ! C : 1
V| = d CFS = | CS = . S=
. 1+PC 1+PC 1+PC n 1+PC 1+PC 1+PC
\ / ¢FZPC =€ N U U U U Y,
e 14PC  1+PC 1+PC Y A4 Y
\ F _p 1 / Response of Response of  Response of
1+PC| 1+PC 1+PC (y,u)tor u to (d,n) y to (d,n)

“Gang of Seven” 29



Key Loop Transfer Functions

1 d i

/ N
r —| 50 O co i—é)v— P(s) 4)——%

F(s) = 1: Four unique transfer functions define performance (“ Gang of Four”)

Sensitivity: _ . 1
Function Ger =5(s) = 1+L(s) A
L(s) = P(s)C(s)

Complementary L(s)
Sensitivity Gyr = T(s) = TTL(s)
Function: “Gan g of Four”
Load Sensitivity G = PS(S) _ P(s) > (the “sensitivity” functions)
Function: Y 1+L(s)

Characterize most performance
Noise Sensitivity »  — (C§ (s) = C(s) criteria of interest
Function: yn 1+L(s) )



Rough Loop Shaping Design Process

A Process: sequence of (nonunigue) steps
1. Start with plant and performance specifications
2. If plant not stable, first stabilize it (e.g., PID)

3. Adjust/increase simple gains
® Increase proportional gain for tracking error
® Introduce integral term for steady-state error
® Will derivative term improve overshoot?

4. Analyze/adjust for stability and/or phase margin
® Adjust gains for margin
® Introduce Lead or Lag Compensators to adjust phase
margin at crossover and other critical frequencies

® Consider PID if you haven't already



Summary of Specifications

 d " |Flyr]
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Controller Process

Key lIdea: convert closed loop specifications on

P(s)C(s)  L(s)
1+ P(s)C(s) 1+ L(s)
to equivalent specifications on loop system L(s)

e Time domain spec.s can often be converted
to frequency domain spec.s

Gyr (s) =

Steady-state tracking error < X%

Tracking error < Y% up to frequency f; Hz

Bandwidth of w, rad/sec

® Usually needed for rise/settling time spec.

1 BM = B0 deg
10 :
T | —
2 .
£ .
) i
£ :
& :
210
i i
107 _
10" 10
Bandwidth [radisec]
L(O)|>1/X

L(iw)| > 1/Y for w < 2nf;

1

V2

L(iwp)| =

10°
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Controller

Summary of Specifications

| 1

El

Process

Overshoot < Z%

Phase/Gain margins (Specified Directly)
® For robustness
® Typically, at least gain margin of 2 (6 dB)
® Usually, phase margin of 30-60 degrees

|Hyr|

M-

1
1/+/2

!y ity

=  Phase Margin > f(Z)

100

Crvarshoat [25]

0 20 40 &0 &0
Phase margin [deq]
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Summary: Loop Shaping

Loop Shaping for Stability & Performance Main ideas

® Steady state error, bandwidth, tracking response ~ * Pérformance specs give bounds

® Specs can be on any input/output response pair on loop transfer function
e Use controller to shape response

102 ——————
10| /\B\,’V . L(s)<1] * Gain/phase relationships
S 10°f : M . constrain design approach
g w0’ L(s) > 1 » Standard compensators:
107} O proportional, lead, P!l
1031 — ———
10 10° : :
0 | R ' Y ' 10
o -50F ; : 10°
s —-100F ; E 10"
E ~150f I |
o 200 PM \ 107 ur |
~250¢ N B
10! - "1['],:, - lilifll - "102 P07 100 100 107 10° 10°100 100 100 10 10° 10°

Freauencv (rad/sec)

Things to remember (for homework and exams)
® Always plot Nyquist to verify stability/robustness

® Check gang of 4 to make sure that noise and
disturbance responses also look OK

27



Lead & Lag Compensators

Llead: K>0,a<b
 Add phase near crossover
 Improve gain & phase margins, increase
bandwidth (better transient response).
Lag: K>0,a>b
e Add gain in low frequencies
* Improves steady state error

10 T T
: ///f
ot A~ -
s Lead: S
- | ———PD |
-1
10 L i Y I W Lo

b
[rad/s]
(a) Lead compensation,a<Db

a
Frequency

—O—K

(s+a)
(s+b)

— P()

Lead/Lag:

10 ""'I\\'I"""' -
| .
\\ Lag:
! | ———Pl -
1 :
I
N
B |
10 L
45N
: P
_90_ RN 'T‘E."'T .-TF:... il i

b a
Frequency [rad/s]

(b) Lag compensation, b < a

e Better transient and steady
state response



Bode’s Integral Formula and the Waterbed Effect

1
1+L(s)

Bode’'s integral formula for S(s) = = Gor = Gyn = Gyg = —Gep

» Let p;, be the unstable poles of L(s) and assume relative degree of L(s) = 2

« Theorem: the area under the sensitivity function is a conserved quantity:

o’e o’e 1
fo 109, |S(Jw)|dw :fo log, ——dw =7)» Rep

Sensitivity Function
10

Waterbed effect:

e Making sensitivity smaller over some
frequency range requires increase in
sensitivity someplace else

*Presence of RHP poles makes this
effect worse

e Actuator bandwidth further limits what
Area below 0 dB +

ou can do
area above 0 dB = y | o o
7 ¥ Re p, = constant *Note: area formula is linear in w; Bode

40 plots are logarithmic

1 2 3 4
10 10 10 10 10

Frequency (rad/sec)

-20

Magnitude (dB)

-30




	CDS 101/110: Lecture 10.3�Final Exam Review
	Slide Number 2
	Slide Number 3
	Frequency Domain Modeling
	Transfer Function Properties
	Slide Number 6
	Poles and Zeros
	Block Diagram Algebra
	Sketching the Bode Plot for a Transfer Function (1/2)
	Sketching the Bode Plot for a Transfer Function (2/2)
	Slide Number 11
	Basic Nyquist Plot (review)�(no poles of 𝐿(𝑠) on imaginary axis) 
	Nyquist Criterion
	What can you do with a Nyquist Analysis?
	Slide Number 15
	Slide Number 16
	Overview: PID control
	Proportional Feedback
	Proportional + Integral Compensation
	Proportional + Integral + Derivative (PID)
	General Loop Transfer Functions
	Slide Number 23
	Rough Loop Shaping Design Process
	Summary of Specifications
	Summary of Specifications
	Summary: Loop Shaping
	Lead & Lag Compensators
	Bode’s Integral Formula and the Waterbed Effect

