:: ROS
00
00

Introduction to ROS

ROS: Robot Operating System
e Whatisit?
* Brief History

* Key ROS Concepts: Nodes & Publishers
* Getting started with ROS: workspaces & packages

Movebase:
* A basic starting point for motion control under ROS

Why ROS?

Robots are computer-controlled electromechanical devices
* First dedicated robot programming languages in the 1970’s
* Robot-centric data types and some robot function libraries

* Didn’t allow for much hardware abstraction, multi-robot interaction, helpful
human interface, or integrated simulation.

* Not much code reuse, or standardization
e Efforts to build robot programming systems continued through 80’s, 90’s

e Several efforts beginning in the 2000’s to standardize robot components, their
interfaces, and basic functions. Sensing, computation, communication become

cheap, and distributed
As robot components and computers became standardized:
* Need fast prototyping (fast debugging, pre-existing drivers,)
* Want plug-and-play characteristic for basic hardware modules

* Linux model of community development and contributions

High Level View of ROS

A mix of “Meta” operating system, “Middleware”, and programming model

* Aset of libraries, tools, and “packages”
* Allows for hardware abstraction across different robot platforms
* Low level device control
* Encourages Code Reuse so that you can build on others’” work
* Tool-based development

Provides computation models and communication protocols

Supports Multiple Development Languages (C++, Python, Java, MATLAB, LISP,)

Scalable (in theory) to large systems and system-level development

Not quite “real-time”, but can work with real-time modules

Works under Ubuntu computer operating system
* |n theory it works in Windows: http://wiki.ros.org/Installation/Windows
* |n practice, dual boot or virtual machine (https://itsfoss.com/install-linux-
in-virtualbox/) is better

http://wiki.ros.org/Installation/Windows
https://itsfoss.com/install-linux-in-virtualbox/

High Level View of ROS

Peer-to-Peer philosophy
* Main functions are in “nodes”, whose computation can be distributed anywhere
* Anodeisa “process.”
* There can be multiple processes on one CPU (time sharing).
* A node can be dedicated to one core in a CPU
 Nodes need not even be on the same physical computer, or even robot.
* Communication via messages
e one-to-many communication model (publish, subscribe)
* Many-to-many communication model is possible, but not desirable
e “Services” are the third main organizational unit in ROS

e ROS is meant to be “thin”: Users create self-contained functions/libraries that
communicate via ROS messages

Main Aspects of ROS

Software Development & User Contributed & Specialized
Implementation Infrastructure “Packages”
* Message passing & communication protocols * Implement Key Robot Functions
 Memory & buffer management * SLAM
* Low level device & hardware control * Navigation & Motion Planning
e Common sensors and input devices * Perception
* Key robot data structures, such as frames, * Vision
and their management * Lidar Processing
 Start-up and system configuration « Hardware-specific packages
* Data logging * E.g., Velodyne VLP-15 “driver”

* Visualization add-ons
* Tools to managing package development .

 Debugging tools

 Simulation & Visualization Tools

A brief ROS History

Originated by a grad student at Stanford Al Lab ~2007.

Taken up and developed by Willow Garage
* a now defunct, but influential, robotics start-up
* Probably the driving influence behind ROS adoption

Since 2013, supported by the Open Source Robotics Foundation (OSRF)
* Openrobotics.org
* Some Caltech Alums work for/with the foundation

A series of “releases” define different generations of ROS
 There are several good tutorials, and even books, on ROS (see later in the slides)
* But some of the “details” can become obsolete in newer releases

Some ROS Resources

ROS Wiki: http://wiki.ros.org/
e Tutorials: http://wiki.ros.org/ROS/Tutorials
* Instructions for downloading & installing ROS
e http://wiki.ros.org/ROS/Installation
* Information on packages available for specific robots:
e http://wiki.ros.org/Robots

* FAQ and User Questions: https://answers.ros.org/questions/

On-line ROS books & tutorials
 “A Gentle Introduction to ROS”, Jason O’Kane (2016)
* https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf
* “A Guided Journey to the Use of ROS,” G.A. Di Caro
* https://web2.gatar.cmu.edu/~gdicaro/16311/slides/start-with-ros.pdf

http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/Robots
https://answers.ros.org/questions/
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf
https://web2.qatar.cmu.edu/~gdicaro/16311/slides/start-with-ros.pdf

Conceptual levels of design

P 8 & Caltech (A ROS Community: ROS Distributions, Repositories
a R r \
L Al L)
\ = & & Carnegie Mellon
Node4)<— . Node5 (B) Computation Graph: Peer-to-Peer Network of
j\ ROS nodes (processes).
Node 1 . I Node 2:
Laser Scanning Map Building
-) =
)| & -
Node 3: — Coozane)
Planning v = fj’
> Node7 e i machines

Node 6

(C) File-system level: ROS Tools for managing source code,
build instructions, and message definitions.

10

ROS Nodes

Node:
* Single purpose, executable program

e Can contain many functions, can call other nodes
* Nodes are assembled into a graph (via communication links)
« Communication via topics, or with a service, or with a parameter server
Examples:
e sensor or actuator driver, control loop (steering control in RC car)
* Motion planning module
Programming: Nodes are developed with the use of a ROS client library
* Roscpp for C++ programs, rospy for python programs.
* Nodes receive data by subscribing to a topic
* Nodes can make data available to other nodes by publishing to a topic

* Nodes can provide or use a service.

ROS Topic

Topic:
e Atopicis aname for a data stream (TCP or UDP)
A message bus over which nodes exchange messages

 E.g., lidar can be the topic that a robot’s on-board LiDAR uses to communicate
its sensor data. The data could be raw, or it could be preprocessed by the lidar
sensor node. It can send data once, or repeatedly.

» Topics are best for unidirectional, streaming communication. A request/response
model is handled by a service. Fixed data is handled by a parameter server.

* Topic statistics available: age of data, traffic volume, # dropped messages

Publish: 1-to-N communication model
publisher subscribers
Subscribe: topic

* |If a node subscribes to a topic, then it receives and understands data published
under that topic.

ROS Messages

Messages are published to topics

Message Format:
e Strictly typed data structure:

* Typed fields (some are predefined in std msgs),

e but user definable as well

E.g. floate4 x) vector3 linear_velocity
floatbdy ¢~ vector3 position vector3 angular_velocity
float64 z _

* .msg text files specify the data structure of a message, and are stored in message
subdirectory of a package

Message Guarantees:
* Will not block until receipt, messages get queued

* Can set buffer length: e.g., N messages before oldest is thrown away

https://wiki.ros.org/std_msgs

® Example: built-in laser scan data message

--- sensor_msgs/msg/LaserScan.msg ---

Header header

float32
float32
float32

float32

float32

float32
float32

angle min
angle max
angle increment

time increment

scan_time

range min
range max

float32[] ranges
float32[] intensities

FHHFHHFHF KK HFHFHRHFHR K FHHK F W W Kk kK

timestamp in the header is the acquisition time of
the first ray in the scan.

in frame frame id, angles are measured around e Q&
the positive Z axis (counterclockwise, if Z is up)
with zero angle being forward along the x axis

start angle of the scan [rad]
end angle of the scan [rad]
angular distance between measurements [rad]

time between measurements [seconds] - if your scanner
is moving, this will be used in interpolating position
of 3d points

time between scans [seconds]

minimum range value [m]
maximum range value [m]

range data [m] (Note: values < range min or > range max should be discarded)
intensity data [device-specific units]. If your

device does not provide intensities, please leave

the array empty.

request

response

Another example: remote interface service in Cobot

-—- cobot_msgs/srv/CobotRemoteInterfaceSrv.srv —--

"Joystick" velocity commands:

float32 drive x #Distance to move along x in meters
float32 drive y #Distance to move along x in meters
float32 drive r #Distance to turn in radians

command num must increment every time the service is called - used to reject out of sync commands
int32 command num

valid command flags:

CmdMove = 0x0001

CmdSetLocation = 0x0002
CmdGetLocation = 0x0004
CmdGetParticlesSampling = 0x0010
CmdSetTarget = 0x0020

int32 command type

SR S S S

The following parameters are used for commands CmdSetLocation and CmdSetTarget
float32 loc x

float32 loc y

float32 orientation

string map

fleat32 loe X
float32 loc y
float32 orientation

float32[] particles x
float32[] particles y
float32[] particles weight
float32[] locations weight

int8 err code

ROS Service

Service:

A mechanism for a node to send a request to another node, and receive a

response:
* Synchronous node interaction . request .

L client < server
* two way communication response

service
e Trigger functions and “behaviors”

* Uses arequest-response paradigm:
* A request structure contains the message to request the service

* A response structure is returned by the service
* Analogous to a Remote Procedure Call (RPC)

Examples:
 Request an updated map, or portion of a map from a “map server”

 Request and receive status information from another vehicle

Parameter Server

A shared “Dictionary”
e Best used for static data, such as parameters that are needed at start-up.
* Runs in the ROS master
* E.g.:
* lidar scan rate

 Number of Real-Sense sensors in a networked sensing situation

ROS Master

Master: Matchmaker between nodes

Nodes make be on different cores, different computers, different robots, even
different networks. This should be transparent to each node’s code

The “master” service runs on one machine.

* |t provides name registration & lookup of nodes and services

roscore starts the master server, parameter server, and logging processes (if any)

Roscore acts like a name server so that nodes get to know each other
D\ /D

nodes nodes

/\

roscore

Every node connects to the master at start-up to register details of the message
streams that it publishes. Also determine its connectivity with the rest of the
computation graph via its subscriptions.

ROS Packages

Package: Basic organizational and code reuse unit of ROS software

e Contains one or more nodes & provides a ROS interface (via messages, services)

 Typically implements a well defined function, like making a map from sensory data

 Organized into a self-contained directory (with a specific structure) containing

source code for nodes, message definitions, services, etc.

Repository

Stacks

Packages

Repository: all code from a
development group
Stack: all code on a particular
subject, high level function (e.g.
navigation), or vehicle (e.g., husky)

Nodes

Package

Nodes
Mossages
Services

Package
Nodes
Messages
Services

“Repository

/'Stack . Stack .

.........

1:.ReP°Sit0fY):l' _,/""""‘.Reposito&\“_,

.v"/.---- :

\ _ROS univ'

erse .

“a\\(

Stack

" | Repository | f

y,
o /’

Stack H i

| |
|)

ROS Distribution

ROS Noetic May, 2020 (planned, see Upcoming May,

. Nini Releases TBA TBA 2025

A VerSIOHEd SEt Of ROS PaCkages Ll (/Distributions#Upcoming_releases)) (planned)

e Like a Linux distribution ROS Melodic May,
Morenia 2023

. . . May 23rd, 2018 -

* Provide a relatively stable codebase for iy ey

development.
 Primarily for core ROS components ROS Lunar -
Loggerhead May 23rd, 2017 201é
 User contributed packages must {fiumar)

make their own updates .

pril,

parmd =

EOL)

(Fjj:jejade TUe ey 95rd, 2015 2/'05’1"%

April,

ROS Indigo Igloo 2019

(/indigo) Mllyeating, 200 : (Trusty

(/indigo) EOL)

Developer Tools:

Many ROS Tools

* Building ROS nodes: catkin_make

* Running ROS nodes: rosrun, roslaunch
* Viewing network topology: rqt_graph

/rosout

scan
/ObstacleAvoidance

/VelacityFromLaser

/camera/image/compressed

rosout

rosout

Debugging Tools:

rqt

Rostopic: display info about active topics
(publishers, subscribers, data rates and content)
rostopic echo [topic name] (prints topic data)
rostopic list (prints list of active topics)
Rqt_plot: plots topic data

_plot /turtlel/pose/x,/turtlel/pose/y & graph datafrom 2 topicsin 1 plot

40 |-

Data logging:

* Rosbag record [topics] —o < output_file>
Data playback:

* Rosbag play <input_file> --clock

Visualization Tools: RVIZ
* Sensor and robot state data
e Coordinate frames
* Maps, built or in process
e Visual 3D debugging markers

Many ROS Tools

Simulation Tools:

Gazebo: started as grad student project at USC
Can model and simulate motions/dynamics of
different robots

Can simulate sensory views

Can build different environments

Can run simulation from ROS code for testing

Il)] Steps: 1 Real Time Factor:

A first look at move_base

move_base is a package that implements an action in ROS.

* An action can be preempted
* An action can provide periodic feedback on its execution

move_base is a node that moves a robot (the “base”) to a goal

* Itlinks a global and local planner with sensory data and maps that are being built, so
that the navigation stack can guide the robot to a goal, and have recovery strategies

"move_base_simple/goal"))
geometry_msgs/PoseStamped N aVlgatIOH Stack Setu D
move_base _—
J Y nav_msgs/GetMap map_server

global_planner -—— global_costmap

" internal T sensor topics

tf/tfMessage nav_msgs/Path recovery_behaviors J sensor_msgs/Laserscan

sensor_msgs/PointCloud
Y \

L " "
odometry source odom > local_planner '=<—— local_costmap
nav_msgs/Odometry - -

amcl —

sensor transforms

Sensor sources

"cmd_vel"|geometry_msgs/Twist

Y provided node
optional provided node
platform specific node

base controller

Goals for Next Week

Download ROS distribution.

* Choose how you want to manage Ubuntu on your machine:
* Dual boot
* Virtual machine: (one option is the free virtual box:

https://itsfoss.com/install-linux-in-virtualbox/

* Try the Windows installation?
* Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner’s level.
* You may prefer to start the first few steps of “A Guided Journey to the Use of ROS”

https://itsfoss.com/install-linux-in-virtualbox/

