
ROS: Robot Operating System
• What is it?
• Brief History
• Key ROS Concepts: Nodes & Publishers
• Getting started with ROS: workspaces & packages

Movebase:
• A basic starting point for motion control under ROS

Robots are computer-controlled electromechanical devices

• First dedicated robot programming languages in the 1970’s

• Robot-centric data types and some robot function libraries

• Didn’t allow for much hardware abstraction, multi-robot interaction, helpful
human interface, or integrated simulation.

• Not much code reuse, or standardization

• Efforts to build robot programming systems continued through 80’s, 90’s

• Several efforts beginning in the 2000’s to standardize robot components, their
interfaces, and basic functions. Sensing, computation, communication become
cheap, and distributed

As robot components and computers became standardized:

• Need fast prototyping (fast debugging, pre-existing drivers, ….)

• Want plug-and-play characteristic for basic hardware modules

• Linux model of community development and contributions

Why ROS?

A mix of “Meta” operating system, “Middleware”, and programming model

• A set of libraries, tools, and “packages”

• Allows for hardware abstraction across different robot platforms

• Low level device control

• Encourages Code Reuse so that you can build on others’ work

• Tool-based development

• Provides computation models and communication protocols

• Supports Multiple Development Languages (C++, Python, Java, MATLAB, LISP, ….)

• Scalable (in theory) to large systems and system-level development

• Not quite “real-time”, but can work with real-time modules

Works under Ubuntu computer operating system

• In theory it works in Windows: http://wiki.ros.org/Installation/Windows
• In practice, dual boot or virtual machine (https://itsfoss.com/install-linux-

in-virtualbox/) is better

High Level View of ROS

http://wiki.ros.org/Installation/Windows
https://itsfoss.com/install-linux-in-virtualbox/

Peer-to-Peer philosophy

• Main functions are in “nodes”, whose computation can be distributed anywhere

• A node is a “process.”

• There can be multiple processes on one CPU (time sharing).

• A node can be dedicated to one core in a CPU

• Nodes need not even be on the same physical computer, or even robot.

• Communication via messages

• one-to-many communication model (publish, subscribe)

• Many-to-many communication model is possible, but not desirable

• “Services” are the third main organizational unit in ROS

• ROS is meant to be “thin”: Users create self-contained functions/libraries that
communicate via ROS messages

High Level View of ROS

Main Aspects of ROS

Software Development &
Implementation Infrastructure

• Message passing & communication protocols

• Memory & buffer management

• Low level device & hardware control

• Common sensors and input devices

• Key robot data structures, such as frames,
and their management

• Start-up and system configuration

• Data logging

• Tools to managing package development

• Debugging tools

• Simulation & Visualization Tools

User Contributed & Specialized
“Packages”

• Implement Key Robot Functions

• SLAM

• Navigation & Motion Planning

• Perception

• Vision

• Lidar Processing

• Hardware-specific packages

• E.g., Velodyne VLP-15 “driver”

• Visualization add-ons

• ……

Originated by a grad student at Stanford AI Lab ~2007.

Taken up and developed by Willow Garage
• a now defunct, but influential, robotics start-up
• Probably the driving influence behind ROS adoption

Since 2013, supported by the Open Source Robotics Foundation (OSRF)
• Openrobotics.org
• Some Caltech Alums work for/with the foundation

A series of “releases” define different generations of ROS
• There are several good tutorials, and even books, on ROS (see later in the slides)
• But some of the “details” can become obsolete in newer releases

A brief ROS History

ROS Wiki: http://wiki.ros.org/

• Tutorials: http://wiki.ros.org/ROS/Tutorials

• Instructions for downloading & installing ROS

• http://wiki.ros.org/ROS/Installation

• Information on packages available for specific robots:

• http://wiki.ros.org/Robots

• FAQ and User Questions: https://answers.ros.org/questions/

On-line ROS books & tutorials

• “A Gentle Introduction to ROS”, Jason O’Kane (2016)

• https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

• “A Guided Journey to the Use of ROS,” G.A. Di Caro

• https://web2.qatar.cmu.edu/~gdicaro/16311/slides/start-with-ros.pdf

Some ROS Resources

http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/Robots
https://answers.ros.org/questions/
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf
https://web2.qatar.cmu.edu/~gdicaro/16311/slides/start-with-ros.pdf

Node:
• Single purpose, executable program

• Can contain many functions, can call other nodes

• Nodes are assembled into a graph (via communication links)

• Communication via topics, or with a service, or with a parameter server

Examples:

• sensor or actuator driver, control loop (steering control in RC car)

• Motion planning module

Programming: Nodes are developed with the use of a ROS client library

• Roscpp for C++ programs, rospy for python programs.

• Nodes receive data by subscribing to a topic

• Nodes can make data available to other nodes by publishing to a topic

• Nodes can provide or use a service.

ROS Nodes

Topic:
• A topic is a name for a data stream (TCP or UDP)

• A message bus over which nodes exchange messages

• E.g., lidar can be the topic that a robot’s on-board LiDAR uses to communicate
its sensor data. The data could be raw, or it could be preprocessed by the lidar
sensor node. It can send data once, or repeatedly.

• Topics are best for unidirectional, streaming communication. A request/response
model is handled by a service. Fixed data is handled by a parameter server.

• Topic statistics available: age of data, traffic volume, # dropped messages

Publish: 1-to-N communication model

Subscribe:

• If a node subscribes to a topic, then it receives and understands data published
under that topic.

ROS Topic

Messages are published to topics

Message Format:

• Strictly typed data structure:

• Typed fields (some are predefined in std_msgs) ,

• but user definable as well

E.g. float64 x vector3 linear_velocity

float64 y vector3 position vector3 angular_velocity

float64 z

• .msg text files specify the data structure of a message, and are stored in message
subdirectory of a package

Message Guarantees:

• Will not block until receipt, messages get queued

• Can set buffer length: e.g., N messages before oldest is thrown away

ROS Messages

https://wiki.ros.org/std_msgs

Service:

• A mechanism for a node to send a request to another node, and receive a
response:

• Synchronous node interaction

• two way communication

• Trigger functions and “behaviors”

• Uses a request-response paradigm:

• A request structure contains the message to request the service

• A response structure is returned by the service

• Analogous to a Remote Procedure Call (RPC)

Examples:

• Request an updated map, or portion of a map from a “map server”

• Request and receive status information from another vehicle

ROS Service

A shared “Dictionary”

• Best used for static data, such as parameters that are needed at start-up.

• Runs in the ROS master

• E.g.:

• lidar scan rate

• Number of Real-Sense sensors in a networked sensing situation

Parameter Server

ROS Master

Master: Matchmaker between nodes

• Nodes make be on different cores, different computers, different robots, even
different networks. This should be transparent to each node’s code

• The “master” service runs on one machine.

• It provides name registration & lookup of nodes and services

• roscore starts the master server, parameter server, and logging processes (if any)

• Roscore acts like a name server so that nodes get to know each other

• Every node connects to the master at start-up to register details of the message
streams that it publishes. Also determine its connectivity with the rest of the
computation graph via its subscriptions.

ROS Packages

Package: Basic organizational and code reuse unit of ROS software

• Contains one or more nodes & provides a ROS interface (via messages, services)

• Typically implements a well defined function, like making a map from sensory data

• Organized into a self-contained directory (with a specific structure) containing
source code for nodes, message definitions, services, etc.

Stack: all code on a particular
subject, high level function (e.g.
navigation), or vehicle (e.g., husky)

Repository: all code from a
development group

ROS Distribution

A versioned set of ROS Packages

• Like a Linux distribution

• Provide a relatively stable codebase for
development.

• Primarily for core ROS components

• User contributed packages must
make their own updates

Many ROS Tools

Developer Tools:
• Building ROS nodes: catkin_make
• Running ROS nodes: rosrun, roslaunch
• Viewing network topology: rqt_graph

Debugging Tools:
• Rostopic: display info about active topics

(publishers, subscribers, data rates and content)
• rostopic echo [topic name] (prints topic data)
• rostopic list (prints list of active topics)
• Rqt_plot: plots topic data

• Data logging:
• Rosbag record [topics] –o < output_file>

• Data playback:
• Rosbag play <input_file> --clock

Many ROS Tools

Visualization Tools: RVIZ
• Sensor and robot state data
• Coordinate frames
• Maps, built or in process
• Visual 3D debugging markers

Simulation Tools:
• Gazebo: started as grad student project at USC
• Can model and simulate motions/dynamics of

different robots
• Can simulate sensory views
• Can build different environments
• Can run simulation from ROS code for testing

move_base is a package that implements an action in ROS.

• An action can be preempted
• An action can provide periodic feedback on its execution

move_base is a node that moves a robot (the “base”) to a goal

• It links a global and local planner with sensory data and maps that are being built, so
that the navigation stack can guide the robot to a goal, and have recovery strategies

A first look at move_base

Download ROS distribution.

• Choose how you want to manage Ubuntu on your machine:
• Dual boot
• Virtual machine: (one option is the free virtual box:

https://itsfoss.com/install-linux-in-virtualbox/
• Try the Windows installation?

• Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner’s level.

• You may prefer to start the first few steps of “A Guided Journey to the Use of ROS”

Goals for Next Week

https://itsfoss.com/install-linux-in-virtualbox/

